飞行训练模拟器设计

飞行训练模拟器设计
飞行训练模拟器设计

仿真飞行驾驶模拟器体验说明

仿真飞行驾驶模拟器体验说明 仿真飞行驾驶模拟器,简而言之即能够实现模拟空中飞行,通过复杂的功能装置实现零基础上手操作的飞行模拟装置,未来几年内像私家轿车一样普遍的交通发展。 仿真飞行驾驶模拟器座舱及体验,通过简单的操作装置进行详细的驾驶说明: 幻视联创飞行模拟器包含模拟座舱、运动模拟系统、视景模拟系统、指挥台以及计算机系统。游戏能够复现飞行及空中环境的操作与模拟。 1. 首先在进入到游戏之前先将引擎降到最低,按下开始键start之时可以看到有游戏的进入界面。 2.映入眼帘的是飞机在机场向跑道上滑行,当到达跑道起始点的时候可以听到提示音:“飞机滑行到指定跑道,准备起飞。”此时把引擎拉到最高。这是正式进入游戏的界面,看到准备起飞的字样,飞行员和飞机。表明飞机就现在将要进入了飞行的状态。 3.当看到姿态仪上速度达到100节(在速度线上有一红线提示)的时,将拉杆向上推起,

让飞机成为起飞的状态。 4. 此时可以看到飞机像天空中飞行,把飞机度数控制在15度左右。(幅度不要过大)这时我们要注意飞机的状态。速度控制在300节左右,高度控制在6000 m到9000m左右。如果飞行高度超过10000米,将会看到云海,尽量使飞机的飞行不要超过13000米,否则会影响飞机的飞行安全。注意飞机(中间的黄色方格)的状态高度及速度的位置变化。 5.飞机在正常飞行时,将飞机处于配平状态,即当飞机飞到一定的高度后,我们将不再提升它的高度,而是将飞机处于配平状态。同时引擎可保持在0的位置使飞机匀速前进。飞机不可能永远的向空中飞行,在一定的高度保持稳定。姿态球保持配平的状态。目的:飞机能够平衡的飞行对于乘客来说就如同在地面上一样。对乘客的安全也有了保障。

焊接操作仿真训练模拟器

武汉科码焊接操作仿真训练模拟器 产品采用分布式仿真实训技术、虚拟现实技术、微机测控技术、声音仿真技术及计算机图像实时生成技术。在不需要真实焊机的情况下,通过仿真主控系统、位置追踪系统,将焊接演练过程中焊枪的位置、速度和角度等进行采集处理,并实时生成虚拟焊缝。 将仿真操作设备、实时3D技术及渲染引擎相结合,演练过程真实,视觉效果、操作手感与真实一致。在焊接演练的过程中,学员能够看到焊接电弧以及焊液从生成、流动到冷却的过程,同时听到相应的焊接音效。 可实现教师端各项功能,分别是:监控、课程设计、任务设计、学生管理、成绩管理、任务共享和系统设置。教师机用于制定任务,供学生练习和考试,在考试完成后可以查看考试成绩,并对学生进行管理。 1、教师软件功能 (1)监控 选择虚拟焊接设备,向其发送训练或考试任务。每台设备应可以同时接受不同类型的课程,或进入不同的模式。 (2)课程设计 可以对课程内容进行设置,应包括:课程名称、任务等,并可方便的添加和删除。应可以查看课程信息:选择一个节点,显示出该节点的详细信息。 (3)任务设计 应可以对任务内容进行设置,须包括:任务名称、目的、焊机类型、接口类型、焊接位置、坡口类型和母材厚度等。

应可查看该教师设计的任务:选择一个节点显示出该节点的详细信息。 (4)学生管理 应可以新建年级、新建专业、新建班级、新建学生、修改学生信息、删除信 息等。 (5)成绩管理 须可以查看自己所管理班级的课程成绩单、学生考试成绩单、任务详细成绩单。须能以文字报告、焊接参数曲线显示训练结果。 (6)任务共享 须实现查看其它教师所设计的任务并能共享。选择要查看的教师,任务列表中须显示出所有的任务,单击某一任务应可以查看任务详细信息。 (7)系统设置 须可将学员列表中的自由设备添加到自己的教学组。可以修改登录密码、设 置公差等级的具体参数。 2、管理员功能 须可向虚拟焊接设备发送任务;能查看课程信息、任务信息、学生信息和成绩;对教师进行管理;分配虚拟焊接设备设备。管理员分为七个部分:设备监控、课程设计、任务设计、教师管理、学生管理、成绩管理和系统设置。 (1)设备监控 须可以查看当前焊接设备,通过选择教师(管理员“设备监控”可以“选择教师”,其他功能与教师“监控”相同)、课程及任务向学员机发送任务。

CMT模拟器的设计与实现(精)

—251— 2007年10月 October 2007 计 算 机 工 程Computer Engineering 第33 第19期 Vol 卷.33 No.19 ·开发研究与设计技术· 文章编号:1000—3428(2007)19—0251—02 文献标识码:A 中图分类号:TN47 CMT 模拟器的设计与实现 杨 华,崔 刚,吴智博,刘宏伟 (哈尔滨工业大学计算机科学与技术学院,哈尔滨 150001) 摘 要:片上多线程(CMT)是未来高性能处理器的发展方向,而软件模拟是处理器体系结构研究和设计中不可或缺的技术手段。该文基于SimpleScalar 工具集设计并实现了CMT 节拍级模拟器——OpenSimCMT ,对CMT 体系结构的设计和评测提供支持。OpenSimCMT 特点如下:(1)支持同时多线程(SMT)和片上多处理器(CMP)的模拟;(2)架构开放,配置灵活,可根据具体研究目标随时进行扩展,添加新的模拟内容及相关统计;(3)功能全面,对线程间资源竞争与共享、各功能单元、流水段、分支预测、多级cache 等全方位模拟,模拟结果准确。关键词:片上多线程;模拟;微处理器;高性能 Design and Implementation of CMT Simulator YANG Hua, CUI Gang, WU Zhibo, LIU Hong-wei (School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001) 【Abstract 】Chip multithreading (CMT) represents the direction for future high-performance processors, and simulation is an integral part of the processor architecture research and design process. This paper presents the design and implementation of a SimpleScalar-based cycle-level simulator —OpenSimCMT, which serves for designing and evaluating the CMT architectures. OpenSimCMT features that: (1) supporting the simulation of simultaneous multithreading (SMT) as well as chip multiprocessors (CMP); (2) open framework and well configurable, being extendible to accommodate a given research goal, and readily to append new simulation contents and relative statistic; (3) all-around simulation, supporting inter-thread resource sharing and competition, various function units, pipeline, branch prediction, multi-level caches, etc, facilitating accurate simulation. 【Key words 】CMT; simulation; microprocessor; high-performance 1 概述 伴随晶体管集成密度的日益提高,处理器的发展将逐渐进入片上多线程(CMT)时代[1]。CMT 通过开发线程级并行(TLP)来克服指令级并行(ILP)的不足,显著提高了处理器的整体处理能力。同时多线程(SMT)[2]和片上多处理器(CMP)[3]是两类典型的CMT 体系结构,自提出以来就受到广泛的研究和关注。SMT 在宽发射超标量(superscalar)的基础上增加多个硬件线程上下文(hardware context)控制,使多线程同时“驻留”于处理器中,不同线程的指令可同时发射,竞争并共享处理器内部的各种资源,有效地提高了资源利用率和整体性能。CMP 将多个相同的处理核集成在同一芯片中,共享大容量L2(或更低)cache ,每个核可看作一个独立的处理器,分别运行不同的程序/线程。CMP 旨在简化处理器设计,将整个片上资源静态划分给多个独立的核,其缺点是各自的资源无法交叉利用,当TLP 不足时会严重浪费资源。相比之下,SMT 中大部分资源是“竞争式共享”,在TLP 和ILP 间动态转换,提高资源的整体利用率,但也增加了设计和实现的复杂度。 处理器的设计、实现和验证过程日益复杂。软件模拟已成为处理器的先期设计、验证和评估的关键一环,也是对新体系结构思想进行验证和量化评价的重要手段。模拟不但节省成本,而且非常灵活,帮助探索未知的设计空间,对不同的设计思路和配置选项进行效果评测。由于性能、功耗、造价、可靠性、兼容性、可扩展性等方面的限制和要求,高效实用的处理器体系结构通常来自对各种设计选项的权衡和取舍(trade-off),这需要大量的先期模拟实验,是一个反复比较、 逐渐求精的过程。如果没有模拟器的支持,评测工作要等到 电路级设计(Verilog 验证、FPGA 仿真等)、甚至是实际芯片出来后才能进行,这是不切实际的。依赖于模拟器的详细程度和设计水平,模拟结果与实际会有不同程度的偏差,但这并不妨碍模拟器作为体系结构研究的重要技术手段、对各种设计选项进行相对客观的评测和比较。本文介绍了在CMT 研究过程所设计并实现的节拍级模拟器——OpenSimCMT 。 2 相关工作 SimpleScalar [4]是由Austin 设计的超标量处理器模拟工具集,包含指令行为验证(sim-safe)、分类统计(sim-profile)、分支行为(sim-brped)、cache 行为(sim-cache)、整体性能模拟(sim-outorder)等不同侧重点和详细程度的模拟;还包括与之配合的交叉编译工具,用于将高级语言程序(C 和Fortran)编译链接成Pisa 指令(类似MIPS ,用于研究目的)的可执行程序。由于SimpleScalar 的功能比较全面、开放源码、可移植性好(C 语言开发)等方面的优点,一直以来被学术界广泛地扩展和移植,作为新体系结构思想的验证和评测工具。目前为止,SimpleScalar 已发展到 4.0版(MASE),而最广泛采用的仍是3.0版。除Pisa 外,还出现了支持Alpha 、ARM 、PowerPC 、IA-32等指令集的版本,并且被成功移植到多种UNIX 、Linux 和 基金项目:国家自然科学基金资助项目( 60503015) 作者简介:杨 华(1974-),男,博士研究生,主研方向:片上多线程体系结构,容错处理器体系结构;崔 刚,教授、博士生导师;吴智博,博士、教授;刘宏伟,博士、副教授 收稿日期:2006-10-18 E-mail :yangh@https://www.360docs.net/doc/dd8751862.html,

某型飞机飞行模拟器的设计与实现

仿真器与仿真设备 357 某型飞机飞行模拟器的设计与实现 李军姜国卫 (空军军训器材研究所,北京,100089) 摘要:某型飞机是我军的新型作战飞机,设备复杂。为使部队训练手段现代化,提高部 队训练质量和训练效益,尽快增强部队战斗力,保障飞行安全,我们研制了该型飞机的飞行 模拟器。该模拟器以基本驾驶飞行技术和战术训练为重点,用于飞行员和领航员的改装、技 术和战术训练,是国内首次研制成功的集飞行员和领航员训练于一体的大型飞行模拟器,系 统规模大,技术难度高。本文介绍了该型飞机飞行模拟器的设计与实现,包括模拟器的功能、系统组成、技术特点和使用情况。 1 引言 某型飞机是我国自行研制的超音速歼击轰炸机,主要用于突击敌战役纵深目标和敌中型以上水面舰船,在不带对地(海)攻击武器情况下,也可作为歼击机执行为轰炸机群和舰船护航、同机护航、远程截击及歼灭空中敌机等空中作战任务。该型飞机具有良好的低空飞行特性、较大的作战半径和载弹量。与国产其它飞机相比,该型飞机由前驾驶员和后领航员两个座舱组成,机载设备数量大、功能多、技术新,系统复杂。自从该型飞机装备部队以来,一直没有相应的模拟器供部队使用。由于新技术、新设备的大量使用,飞机的综合性能及武器装备由简单变复杂,由单一变组合化。作为飞行人员,在一定的飞行时间内已经很难熟练掌握飞行操纵技能和机载装备的使用方法,灵活应用于战术科目的演练就更加困难,更无法掌握临界参数状态下的特情处置方法。因此,训练手段模拟化,是形势发展的需要。为使部队训练手段现代化,提高部队训练质量和训练效益,尽快增强部队的战斗力,保障飞行安全,给飞行人员提供一套具有真实场景,实时仪表,如身临其境般感觉的训练仿真设备是十分必要的,也是非常迫切的。 2 基本组成与原理 该型飞机飞行模拟器是以基本驾驶飞行技术和战术训练为重点的多任务训练模拟器,用于该型飞机飞行员和领航员的改装、技术和战术训练。 该型飞机飞行模拟器是一台人在回路里的大型、实时仿真系统,其组成框图及控制关系如图1所示。该模拟器由前舱主控计算机、杆力计算机、教控台计算机、前舱雷达计算机、平显计算机、后舱主控机、后舱雷达计算机、GPS计算机、全向告警器计算机、导弹指挥仪计算机、图形工作站和网络服务器等12台计算机通过网络系统构成,是以计算机为核心的复杂的人机闭环实时仿真系统。其中各个子系统均与计算机交连构成各自的闭环。飞行员、领航员、飞行教员、主控机、各子系统又组成了一个大闭环。

微软飞行模拟器10操作

模拟器命令按键显示/隐藏ATC窗口` (重音符号) 退出FS Ctrl + C 立即退出FS Ctrl + break 显示帧数等信息Shift + Z (多按几次) 全屏模式切换 Alt + Enter 摇杆启用开关 Ctrl + K 显示/隐藏膝板 F10 (多按几次) 显示菜单 Alt 暂停 P 重置当前飞行 Ctrl + ; (分号) 保存飞行 ; (分号) 选择第一项 1 选择第二项 2 选择第三项 3 选择第四项 4 减小 - (减号) 慢慢减小 Shift+ - (减号) 增大 = (等号) 慢慢增大 Shift+ = (等号) 声音开关 Q 时间压缩选择 R (+或–) 自动驾驶命令 空速保持开关 Ctrl + R 空速选择 Ctrl + Shift + R 高度保持开关 Ctrl+ Z 高度选择 Ctrl + Shift + Z 进近模式开关 Ctrl + A 姿态保持开关 Ctrl + T 自动油门预位 Shift + R 起飞/复飞推力 Ctrl + Shift + G 反向进近模式开关 Ctrl + B 飞行指引针开关 Ctrl + F 航向保持开关 Ctrl + H 航向选择 Ctrl + Shift + H 进近航向道保持开关 Ctrl + O 马赫保持开关 Ctrl + M 自动驾驶主开关 Z Nav 1保持开关 Ctrl + N 平直飞行开关 Ctrl + V 偏航阻尼器开关 Ctrl + D 操纵面命令 副翼向左配平 Ctrl + NP 4 副翼向右配平 Ctrl + NP 6 左倾(副翼) NP 4 右倾(副翼) NP 6 将副翼和尾舵回中 NP 5 升降舵向下配平 NP 7 升降舵向右配平 NP 1 襟翼完全放下 F8 襟翼放下一档 F7 襟翼完全收起 F5 襟翼收起一挡 F6 下倾(升降舵) NP 8 上倾(升降舵) NP 2 尾舵向左配平 Ctrl + NP 0 尾舵向右配平 Ctrl + NP Enter 使用尾舵向左偏航 NP 0 使用尾舵向右偏航 NP Enter 扰流板预位 Shift + / (除号) 扰流板/减速板开关 / (除号) 水舵收/放 Shift + W 引擎命令 对于多引擎飞行器,除非 你先按下E+引擎号(1-4) 选择单个引擎,否则你的 操作将对所有引擎生效。 要恢复对所有引擎的控 制,先按住E,然后快速 连续地按下所有引擎号(E, 1, 2,…) 引擎除冰开关 H 自动启动引擎 Ctrl + E 化油器加热/引擎除冰 H 引擎选择 E 启动器选择 J 磁电机选择 M 增大混合比 Ctrl + Shift + F3 减小混合比 Ctrl + Shift + F2 混合比设置显示/隐藏膝 板 显示菜单 暂停 重置当前飞行 保存飞行 起飞/复飞推力 自动油门预位 姿态保持开关 进近模式开关 高度选择 高度保持开关 平直飞行开关 偏航阻尼器开 操纵面命令 副翼向左配平 副翼向右配平

仿真驾驶体验飞行模拟器的应用与案例

仿真驾驶体验飞行模拟器的应用与案例 幻视联创是国内顶级的飞行模拟器研发机构,多少年来走过了无数的风风雨雨,为飞行模拟行业带来了一次又一次的创新。幻视联创本着一颗爱国的心,为我国军事、航天做出了突出贡献。中国航空研究院院长表示:“航空航天飞行模拟是我国大力发展的科学项目,我们不可能用真实的设备去实验,因为经费太高危险性非常大,所以高精准的模拟设备是最佳的选择,同时对模拟系统的要求也非常之高,要完全吻合真实飞行,无形中就加大了模拟飞行研发的难度,在多次探索中发现幻视联创的飞行模拟器可以满足基本的要求,达到飞行效果。” 国家机构的大力响应,让幻视联创飞行模拟器研发机构家喻户晓,各大商业、地产机构趋之若鹜的纷纷订购与租赁飞行模拟器来提高自己的人气。新光天地购物中心陈设飞行模拟器,众多消费者竞相参观体验,给消费者带来了前所未有的新鲜感,体验式盈利模式从此兴起。而万科房地产活动为取得爆炸式盈利效果,租赁了幻视联创飞行模拟器,仅用7天的时间让盈利效果翻了几倍,可谓是小投入大收入。 幻视联创飞行模拟器为何有如此大的魅力?其原因在于飞行模拟器由真实的座舱、运动模拟系统、视景模拟系统、指挥台以及高级计算机系统组成,姿态

仪、导航仪、引擎参数仪表、飞行摇杆、引擎操纵杆、方向舵、通讯系统等设备也一应俱全。座舱结构细致到每一个棱角,完全按照A380座舱1:1的比例所设计,它以一种无法抗拒的魔力深深的吸引你,激起你的驾驶欲望。飞行模拟器的系统可精确地模拟出飞行高度、速度、姿态、方位、位置等参数,由机场起飞、空中飞行、到降落全程模拟,空中飞行时可遇到雾天、强气流、雷雨等各种气候,飞行模拟器的视景也开始晃动,让飞行驾驶增添了挑战兴趣。其高保真的声音系统模拟出逼真的声音的效果,让飞行驾驶更加身临其境。 近期幻视联创接到了来自美国联合航空公司的传真,想要订购幻视联创的飞行模拟器,幻视联创的董事长问:“为什么要选择我们的飞行模拟器?国外有很多这种开发机构的。”美国联合航空公司给的回答:“原因有两方面,一是飞行系统,二是设备价格,我们考察了很多飞行系统开发机构,你们的飞行系统精确度是最高的,相对国外的开发机构相差无几,同时又比国外的设备价格低很多,我们当然会选择贵公司的设备”。

模拟驾驶训练机

学车之星怎么样?学车神器谁能不疯狂 2013年底全国各地的交通部又推出了电子路考,新驾考一出其通过率又不到3成,想快速拿到驾照似乎越来越难。未来10年,将迎来“学车高峰期”,将有超过3亿人进行驾考,同时也将有3亿人面临驾考难题! 学车之星驾驶模拟器的问世,想必是将为不少学员解决学车难题,是快速通过驾考的必备利器。学车之星怎么样?利用虚拟现实仿真技术营造一个虚拟的驾驶训练环境,完全“克隆”真实学车环境。 学车之星怎么样? 1小时熟练掌握方向盘操作技能;1小时无需眼睛看熟练挂档;1小时熟练掌握离合器操作技能......15天熟练掌握九选三技能;30天就能熟练掌握各项驾驶技能,让学员不再为学车而烦恼,让驾校轻松提高教学质量!学车之星怎么样?学车之星为何什么下面就来看看其技术优势吧。学车之星怎么样?三大优势: 3D视觉特效:独家采用世界前沿3D技术,将二维画面转换成三维立体道路驾驶场景,视觉特效逼真,在操作时与驾驶真车无异。 整车仿真操作:采用全车仿真模式,从方向盘、油门、离合器、刹车,到档位、仪表操作方法都与真车一致,学员操作时有与真车驾驶基本相同的感觉。学车之星怎么样?适用于宝马、奔驰……各种车型的操作,方便学员拿到驾照后直接上车。 全地形演练:学车之星所有训练课程与交通部新颁布的驾驶员培训新大纲要求一致,轻松实现驾驶训练与考核、交通法规的教学与考试相结合,足不出户就能学习高速、乡村、山路、坡起等各种路面地形的操作训练以及雨、雪、雾等天气的驾驶技巧。 学车之星怎么样?在未来10年,学车之星汽车驾驶模拟器将覆盖汽车驾驶培训行业90%的市场,全面实现智能化培训,如此驾驶神奇,谁能不疯狂? 创业提示: 创业有风险,投资须谨慎,留言咨询是迈向成功的第一步。如果对此项目感兴趣,请在下方留言板留言索取项目资料。例如:该项目如何加盟?投资多少?收益如何?可以把你的任何加盟问题告诉我们,总部将第一时间为你解答。 学车之星驾驶模拟器优点:耐心教练在身边 很多学员尤其是白领平日工作繁忙,到驾校上车练习时间短,而且学车有时领悟比较慢,经常被教练唠叨,有了学车之星驾驶模拟器的出现,解决一切烦恼。学车之星驾驶模拟器优点多多,减少占用车辆、占用场地、占用教练的成本,安全性能高,不怕学不会,最主要是耐心教练在身边,不怕教练唠叨。 学车之星驾驶模拟器优点: 1、便携,容易装卸,连接电脑使用,简单方便,随时随地进行驾驶训练。训练过程中按教纲进行语音提示,失误指导和纠正,教练就在您身边。

USB接口的RS485信号模拟器设计

USB接口的RS485信号模拟器设计 引言USB总线是一种高效、快速、价格低、体积小、支持热插拔的串行通信接口,目前USB 这一接口形式在电子产品的设计中得到了广泛应用。本文所设计的RS485信号模拟器就是采用USB接口总线,可以很方便与PC机进行连接,并且USB接口可以为外界提供电源。 RS485是一种平衡方式传输的串行接口标准,它的电气特性标准中有严格规定,但它的通信协议可以由用户自行定义。本文将详细讨论USB总线信号与 RS485总线信号的相互转换,及PC机终端应用软件对USB接口芯片的各种操作。在此基础上用户可以根据不同需求,在终端应用软件中自行设计通信协议。1 总体设计信号模拟器主要包括USB接口芯片、单片机子系统、RS485与TTL电平转换子系统。它可以实现两个功能:a.信号模拟器通过应用程序软件设置串行通信参数和数据帧结构,最终输出的信号是指定串行通信参数和数据帧格式的RS485总线数据,可以为采集器提供标准信号源;b.在信号模拟器内部可以实现信号自反馈功能,即将实际发送给采集器的数据通过信号模拟器内部回环电路回送给终端应用程序软件并最终显示出来,以验证信号模拟器发送数据是否正确。USB接口芯片FT245R是将USB接口信号转换成8位并行信号,由MCU读取8位并行信号数据,然后MCU通过全双工的串口将读到的数据发送给 RS485电平转换电路1,这样输出的信号就是满足指定要求的标准RS485总线信号。将RS485电平转换电路1输出端信号反馈给RS485电平转换电路2的输人端,这样可以把RS485电平转换成TTL电平,再通过全双工的串口进行接收,最终将数据回送到终端应用程序软件。信号模拟器的设计总体框图。 2 硬件电路设计2.1 USB接口芯片FT245RFT245R由FTDI(Future Technology Devices Inte-national Ltd.)公司推出,该芯片主要完成USB串行总线和8位并行FIFO接口之间的相互协议转换。整个USB通信协议全部由芯片自动完成,开发者无须考虑底层固件的编程。该芯片利用内部集成的时钟电路进行工作,无须外部提供时钟;完全兼容USB2.O协议。它有256字节的接收缓冲区和128个发送缓冲区,可以进行数据的大吞吐量操作。通过8位并行数据口D[O:7]和4位读写状态/控制口RXF、TXE、RD、WR就可实现与微控制器的数据交换。下面介绍读写FT245R FIFO操作时序要求。(1)FT245R FIFO读操作读操作时序。当RXF 为低,表示当前FIFO接收缓冲区内有数据,可以执行读操作读取接收缓冲区数据。在RD电平由高变低,FIFO控制器将接收缓冲区中的数据输出到8位数据端口上,MCU此时只需读取I/O口就可以将数据取到内部数据总线上来,再将RD信号拉高完成1字节数据的读取。当将 FIFO接收缓冲区中的数据全部取出后,RXF被拉高表示数据为空。在RXF为高时,禁止从FIFO接收缓冲区读取数据。 (2)FT245R FIFO写操作写操作时序。当TXE为低,表示当前FIFO发送缓冲区空,可以向发送缓冲区写入数据。在WR为高电平时,MCU将8位数据D[0:7]送到并行I/O口上,在WR 信号电平由高变低时数据被写入发送缓冲区中。当TXE为高时,表示当前FIFO发送缓冲区已满或者正在写入上一个字节,此时禁止向发送缓冲区中写入任何数据。MCU向FT245R写入数据时应确保TXE为低。 2.2 单片机子系统单片机子系统包括单片机和上电复位芯片。本设计中采用的单片机是AT89S52。 AT89S52作为系统的中央处理器担负着系统和PC主机的通信、系统内各部件正常工作等重要任务。AT89S52这款单片机内部有看门狗电路,可防止程序陷入“陷阱”或跑飞。为了使单片机上电复位可靠,这里采用专门的复位芯片MAX708。2.3 RS485接口电路设计信号经过单片机的UART接口,再经过MAX485转换即构成了RS485通信接口。2.4 硬件电路图 USB接口可以向外提供电源。USB接口规范规定:可提供电源电压为4.75~5.25 V,低输出功率USB端口最大的输出电流为100mA。信号模拟器所需的供电

一种飞机维修训练模拟器的设计

762 计算机测量与控制.2002.10(11) Computer Measurement &Control 设计与应用 收稿日期:2002-02-05。 作者简介:谢华(1965-),男,河南省信阳市人,学士,讲师,主要从事航空维修技术、计算机应用的教学和科研工作。 文章编号:1671-4598(2002)11-0762-03 中图分类号:T P274 文献标识码:B 一种飞机维修训练模拟器的设计 谢 华,闫景波,魏 东,孙启顺 (空军第一航空学院,河南信阳 464000) 摘要:介绍了一种采用控制图像来代替中央指示设备的飞机维修训练模拟器,详述了其工作原理和软件的设计,并讨论了其技术难点的解决方法。该模拟器不仅制作成本低,而且辅助训练手段多,训练效率高。 关键词:模拟器;操作设备;显示设备;区域图像 Design of Aircraft Maintenance Training Simulator XIE Hua,YAN Jing bo,WEI Dong,SUN Qi sun (F irst Aeronautical Colleg e of Air Force,Xinyang 464000) Abstract:A kind of aircraft maintenance training simulator w hich replace r eal center displaying equipment by controlling imag e is intro duced.Its w ork pr inciple and software design are presented,and the solv ing met hod of its technique difficulty is discussed.T his simulator is not only of low cos t but also mor e tr aining measures,so its tr aining efficiency is high. Key words:simulator;oper atio n equipment;displaying equipment;reg ional imag e 1 引言 在现代高技术战争中,飞机所起的作用已越来越明显,但飞机能否发挥出它的威力,这不仅取决于飞行员的驾驶和实战技术,同时也取决于飞机维修人员的维修保障技能,因为维修人员对飞机的维修保障质量影响着飞机性能的发挥甚至飞行安全的保证,因此,提高飞机维修人员的维修技能始终是航空地勤部队的主要任务。要提高这些技术和技能,维修人员必须反复在飞机上练习提高。然而现代飞机上的设备价格昂贵,寿命有限,不允许因训练过多地使用,并且一些训练科目在操作过程中危险性大,易造成训练事故,对燃料和物资的消耗巨大,为了解决该问题,我们设计了一种飞机维修训练模拟器。 2 模拟器设计的总体方案 由于飞机操作训练内容大多集中在飞机座舱内,因此,模拟器模拟的主要内容应该是座舱各设备。通过对飞机座舱各设备研究分析发现,这些设备可分为两类,一类为用于手动的操作设备,如油门、驾驶杆、手柄、电门、按钮等,这类设备主要用于手动操作训练,因此必须采用实装设备或外形一样、功能相同的仿制设备,这些设备主要集中在座舱内两侧操作台上;另一类为用于观察和测量的显示设备,如显示 器、仪表、信号装置等,这些设备往往价格非常昂贵且寿命有限,它们大多集中在中央仪表板上,个别安装在两侧位置。 飞机维修训练模拟器的设计应从技术可靠性、实用性和性能价格比来综合考虑,采用一种经济可行的方法,因此,模拟器不完全使用飞机实装设备。对用于训练手动操作技能的油门、驾驶杆、开关、按钮、电门等设备采用实装;对于中央仪表板,由于其上的设备大多为价格昂贵、寿命有限且主要用来显示或指示的设备,采用计算机显示器1 1显示图像来代替;对于两侧的显示设备采用外形相同的模拟设备来完成;对于各设备工作的声音采用计算机控制音响播放声音文件的方法来实现。 图1 模拟器的结构框图 3 模拟器的工作原理 模拟器结构如图1所示,将用于训练手动的操作 设备分为两类,一类为开关量设备,如电门、按钮、把手等设备,这类设备中的一部分本身就是电路开关,因此,将其直接连接到I/O 输入采集板上即可使计算机获得其工作状态的变化。这类设备中的另一部

飞行模拟器飞行仿真技术由此开始

随着计算机和软件技术的发展,飞行模拟器的性能不断提高,已经成为保障飞行安全、大幅度提高飞行人员及机组人员的技能、缩短飞行人员训练周期、降低训练成本,以及提高训练效率的不可缺少的重要训练装备。飞行训练基地采用飞行模拟器,不仅可以提高飞行员训练水平,促进航空安全指标提升,确保飞行自主训练工作顺利实施,而且今后在飞行模拟训练上将拥有更大的自主性、自控权,并可根据飞行员的特点,有针对性地展开飞行训练,进一步提高各种训练强度。 1.定义 通俗定义:飞行模拟机就是通过电子计算机的建模运算以在地面上最大程度逼近飞机真实飞行状态,从而给飞行员营造一种全方位、多知觉、多飞行状况的真实操纵感。 严格定义:是指用于驾驶员飞行训练的航空器飞行模拟机。它是按特定机型、型号以及系列的航空器座舱一比一对应复制的,它包括表现航空器在地面和空中运行所必需的设备和支持这些设备运行的计算机程序、提供座舱外景像的视景系统以及能够提供动感的运动系统。 2.工作原理 为达到模拟飞行目的,研制者需要对模拟目标飞机飞行全过程涉及的各种动态特性建立数学模型,预编好程序并嵌入计算机运行,程序在接收到操作人员(一般为受训飞行员)的操纵信号后实现接近真实飞行的响应。具体来讲,飞行模拟机一般由仿真控制台(飞行员驾驶舱)、仿真计算机、仿真环境、飞行员共四部分组成的一个封闭反馈系统,如上图所示。其研制核心和难点在于仿真计算机,该部分的飞行动力学数学模型、系统模型、仿真环境模型、外干扰模型在经计算机求解后,通过运动系统、视景系统、音响系统给飞行员营造一种多维感知信息 的仿真环境,从而让飞行员感觉到自己犹如在空中真实操纵“飞机”一样。各主要系统简述如下: 模拟座舱:应根据需求选择其布局与特定型号飞机或组类飞机一样。模拟座舱内的仪表系统实时指示或显示各种飞行参数和系统参数。

叉车仿真训练模拟器

叉车仿真训练模拟器概述 一般来说,凡是需要有一个或一组熟练人员进行操作、控制、管理或决策的工作,例如汽车、飞机、船舶的驾驶,外科手术、消防、各类工业设备的操作等都需要进行专门的职业技能训练。过去的职业训练基本上都在实际系统中进行。而随着计算机技术、虚拟现实技术、多媒体技术、自动控制技术的飞速发展和广泛应用,以计算机系统为核心和操纵控制台为基础构成的各种模拟仿真训练器已成为当今重大生产设备或过程控制设备操作人员上岗工作、培训的必备手段,受到国内外工业界的高度重视,并在航天航空、火力及核能发电、石油化工、军事、航海等许多领域得到广泛使用。目前,模拟仿真训练器已逐步成为培训飞机、汽车、船舶等驾驶人员的重要设备之一。 叉车、堆高机、正面吊是冶金、制造、港口、水电、建筑、铁路货场、仓储中心等部门装卸货物的主要设备,也是容易出安全事故的设备。这些叉车驾驶的操作涉及到财产与生命安全,对操作人员的素质要求愈来愈高。由于它们可应用在不同行业领域,其种类繁多,操作技术多样,在生产过程中不仅要完成驾驶操作,更要与其他工种人员协调一致地完成吊装等装卸工艺动作,如操作不当而引起的破坏程度和危险性都会大大增加。这一切都为车辆司机的培养和训练工作带来极大的挑战。随着现代科学技术的迅速发展和企业生产管理水平的提高,人们迫切需要一种安全、快速、高效的培训方式,集虚拟现实技术?计算机仿真技术?多媒体技术、自动化技术等先进技术于一体的高科技产品——叉车驾驶操作仿真模拟器的研制和开发就应运而生。 叉车驾驶操作仿真模拟器相对于目前传统的操作培训方式,具有很多突出的优点: 1) 安全性好。使用仿真训练机可以模拟高速、重载以及其它非常危险的环境以实现有安全保障的训练,杜绝事故隐患,减少事故损失。 2) 经济性好。仿真训练机的成本远低于实际叉车设备。在训练过程中,还可以免除实机操作中的油耗、电耗及零部件的磨损。同时,仿真训练机使用周期

飞行模拟器实习报告.doc

飞行模拟器实习报告 本学期上海工程技术大学飞行学院举行了飞行模拟武器实习。作为飞行学院的一名大三学生,我参加了这次模拟机实习。本次实习分为三个阶段:1、陆总的《YGI概念型模拟器飞行操作教程》的讲座; 2、上机训练; 3、教员和老师的讲评。 此次实习的目的:本实习是飞行技术专业本科生的一项专业实习,其目的是通过对YGI概念型模拟器飞行操作教程的学习,加深对所学专业的理解,明确实习目的。要求学生通过上机训练,将课本所学的理论知识与实际操作相结合,掌握飞行的一般程序和基本操作方法,初步学会机组资源管理,考察学生的飞行综合能力,为后续去国外航校的飞行训练奠定基础。 一开始在没有学习专业课的时候,大一下学期我们也参加了一次飞行模拟器的飞行训练,但是由于什么都不知道,根本不知道也记不清楚当时我们学会了些什么,我们飞了些什么。这次实习前陆总给我上了一场讲座——《YGI概念型模拟器飞行操作教程》,介绍了上海工程技术大学飞行学院YGI概念型模拟器驾驶舱布局与设备和现代民用大型运输飞机的基本飞行操纵方法。其内容包括了设备及仪表、飞机的性能,正常飞行程序、非正常飞行程序和飞行检查单。在设备与仪表中,飞行姿态显示器是最重要的。它的功能是:显示了飞机的俯仰与坡度—飞行姿态;飞行速度;飞行高度;升降速率;显示航向还有ADF指针等等。飞机性能主要看以下几个数据:起飞速度,着陆速度,起飞滑跑距离,着陆滑跑距离,巡航速度,最大巡航速度等

等。让我记忆最深刻的是起飞速度,其中V1(决断速度其大小等于135海里/小时)、VR(抬轮速度138海里/小时)、V2(其大小为143海里/小时)很重要,起飞的时机要把握好。正常飞行程序分为:驾驶舱检查程序、发动机启动程序、滑行前程序、滑行程序、起飞前程序、起飞程序等等。在起飞前,这些程序都要一步一步做的,副驾驶配合机长完成,且必须做的眼到手到。这是为了检查飞机的状态是否能够安全起飞。非正常飞行程序虽然很少见,但是也有发生的,下面我来介绍一下非正常飞行程序。出现非正常情况有这些因素:中断起飞、一台发动机失效(V1后继续起飞)、单发目视进近、单发复飞、发动机发生火警、两台发动机失效、陆地迫降、起落架发生故障、襟翼发生故障。这些问题一旦出现就一定要执行非正常检查单,飞行员一定要冷静处理,相信自己的技术,因为我们的目标就是建立一个安全舒适的飞行环境。通过陆总的讲座以及我学习的专业课知识,以上便是我的一些学习心得。

ILS-VOR模拟器的设计与实现

ILS/VOR模拟器的设计与实现 【摘要】本文介绍了仪表着陆系统(instrument landing system,ILS)、甚高频全向信标(Very-high-frequency Omnidirectional Range,VOR)系统的主要组成及系统工作原理,给出了一种小型化ILS/VOR模拟器的设计方案,详细介绍了模拟器的组成和各个功能单元的实现方案。 【关键词】仪表着陆系统;甚高频全向信标;模拟器;国际民航组织ICAO(International Civil Aviation Organization) 1.概述 甚高频全向信标,是一种用于航空的无线电导航系统,是民航应用最为普及的导航系统,其工作频段为108MHz~117.95MHz,信号的调制方式为调幅、调相,主要用于飞机的航路导航和非精密进近引导。系统由地面台和机载设备组成,地面台发射射频信号,机载设备接收信号并结算,为飞机提供相对于地面台的磁北方位。 ILS系统是国际民航组织(ICAO)选定的标准进近着陆系统,工作频率为75MHz、108.1MHz~111.95MHz、329.15MHz~335MHz,信号的调制方式为调幅,主要用于飞机的进场着陆引导,广泛应用军航和民航。系统由地面台和机载设备组成,机载设备接收信号并结算,为飞机提供相对于预定着陆轨迹的偏差信号和相对跑道入口的粗略距离信息。ILS/VOR模拟器模拟ILS/VOR系统地面台发射的射频信号,能同时提供航向地面台、下滑地面台、三通道指点信标地面台或伏尔地面台的模拟信号,主要用于机载ILS/VOR接收设备的检测、维修、维护以及ILS/VOR系统试验室的飞机着陆的动态激励仿真。 2.电路设计

飞行仿真技术现状与发展趋势

飞行仿真技术现状及发展趋势 航空飞行仿真系统的发展几乎和飞机的发展同步。飞机作为复杂的空中交通工具,对驾驶员的要求相对陆地海洋复杂得多。飞机作为武器平台,操纵它也是一项十分复杂的工作。在飞机上训练飞行员,不但耗资大,安全也难以保障。如何科学、经济、安全地培训飞行员和飞机设计同样重要。航空飞行洲练仿真系统用于飞行员训练具有安全、可靠、节省能源和经费,并可不受气象、时问、地点限制等诸方面的优越性,可以高质量高效率的培养飞行员,而且可以完成在一般飞行中不能完成的特情处理的训练,缩短训练周期、提高训练效率等突出优点。 为应付未来的航空快速发展和高技术局部信息化战争做准备,世界各国航空和军事部门都非常重视对航空飞 ,777iI 练仿真系统的研制和应用。 目前,国内外的情况大致如下所述: 我国航空航天领域在五十年代末开始对飞行控制系统进行半实物仿真试验, 自行研制三轴转台等仿真设备。在“七五” 、“八五”期间,我国建立了一批大型 的仿真实验室或仿真系统,在我国研制飞机、导弹、运载火箭、舰船等型号中发 挥了重要作用。我国飞行模拟器的发展经历了由国外引进、自行开发,并向国外出口。我国民航系统于 1975 年首次引进 Boein9707 和三叉戟飞机的飞行模拟器, 1988 年引进 MD 一 82 飞机飞行模拟器,1992 年后又陆续引进 Boeing 737到 Boeing 777 系列的飞机飞行模拟器和空中客车A320,A340 等上百台飞行模拟器和飞行 训练器装备在多个飞行训练中心,在民用飞机驾驶员的培训中起了重大的作用。 表 1 列出了中国民航主要的飞行训练中心和装备的主要航空飞行训练设备。国外航空飞行训练仿真系统的发展已由单台独立使用的模拟器转向多台模拟器联网 组成的航空飞行训练仿真系统;从驾驶术训练为主转入以战术训练为主;在基于网络的仿真系统为平台的基础之上,实现以指挥员为核心作战单元的作战仿真。并且,新技术不断涌现,如:板块式背投视景显示技术解决了大视场角需求与投 影器安装位置的矛盾, LCOS新技术的投影器正在逐步代替具有随机光点扫描的 CRT投影器,战场环境仿真软件功能更加完善和灵活;以电动代替液压的操纵负 荷和六自由度运动系统已普遍在高等级模拟器上使用;HLA 实时网络应用更加广泛;嵌入式仿真技术在飞机上的应用,模拟训练与实装训练甚至和实战结合更加 密切。

飞行模拟器自动飞行控制系统设计

飞行模拟器自动飞行控制系统设计 摘要:自动飞行控制系统是由自动驾驶仪和自动油门取代人工操纵,保证飞行 品质,降低了飞行员的工作量。介绍了自动飞行系统的组成,功能。在飞行控制 系统的自动测试中,飞行控制接口信号是必需的。论述了飞行控制接口信号的模拟 方案,并详细介绍了信号模拟器的软硬件工作原理。 关键词:自动飞行控制系统;飞行模拟器;系统设计 1前言 自动飞行系统,是指自动驾驶仪以舵回路稳定系统为主,配合无线电导航, 惯性导航的航向指令输入,增加姿态控制回路,和自动油门结合后形成的完整的 控制系统。飞行仿真器中,自动飞行系统仿真的任务是要用相应的软件模块与仿 真设备来仿真飞机自动飞行系统的功能。随着机载计算机广泛的应用,各机载电子 设备之间的联系越来越紧密,飞行控制系统所接收的信号越来越多,这虽然大大加 快了航空电子综合化的进程,然而也给飞行控制系统设备的测试带来了困难。由于 缺乏与被测试部件相关的飞行控制接口设备,使得很多测试工作难以进行。因此 , 研制飞行模拟器自动飞行控制系统就变得十分有意义。 2自动飞行控制系统基本概念 2.1自动飞行系统组成 自动飞行系统是飞机飞行系统的重要组成部分,由自动驾驶仪,自动油门与飞 行方式控制面板组成。自动驾驶仪是一种不需要飞行员干预就能保持飞机飞行姿 态的自动控制设备。他是自动飞行系统的核心部件,主要用于稳定飞机的俯仰角、倾斜角和航向角,稳定飞机的飞行高度和飞行速度,操纵飞机的升降和协调转弯。 还可以与导航系统交联进行自动导航,与地形雷达交联进行地形自动跟踪,与仪表 着陆系统交联进行自动着陆。此外还有增稳、自动配平,高度报警的作用。自动 驾驶仪主要由操纵装置、测量装置、综合装置、放大器、舵机和回输装置组成。 自动驾驶仪的原理如图1所示。 自动驾驶仪发出信号控制舵面偏转,产生舵面操纵力矩,实现对飞机的操纵,而后飞机改变 飞行姿态,通过测量装置改变自动驾驶仪的输出信号,这样反复作用,最后达到平衡。自动油门 根据飞行员选定的模式,计算出油门杆驱动信号,使油门杆位置自动调整到保证发动机推力 处于最佳配置状态。方式控制面板提供飞行员操作的各种开关、按钮以及参数选择。 3自动飞行系统控制原理 自动飞行控制系统主要有纵、横向两个控制通道。纵、横向控制器的作用是计算飞机的 俯仰角和滚转角指令信号,作为驱动飞机运动的指令信号。 3.1俯仰通道控制原理 无论系统工作在哪种工作模式下,纵向控制的目的都是消除飞机对基准状态的偏差,通 过俯仰角、迎角、升力、阻力、空速之间的关系实现飞行模式的控制。基本的控制规律:俯 仰角增加→迎角增加→升力增加→阻力增加→飞行速度减少。所以,当飞行高度高于或低于 基准值时,应控制飞机下俯或上仰;当升降速度低于或高于基准值时,应控制飞机上仰或下俯;当指示空速低于或高于基准值时,飞机应下俯或上仰。 3.2横滚通道控制原理 横滚飞行方式下工作模式包括航向保持模式,横向导航模式,VOR/LOC无线电导引模式,进近模式。航向保持与横向导航模式,是控制飞机的滚转角来控制飞机的航向。当飞机偏离 给定的基准航向时,控制副翼,让飞机倾斜,产生侧力,使飞机转向基准航向。VOR/LOC无 线电导引模式,进近模式是来控制飞机的航迹的。在航迹控制模式下,应控制飞机的重心移 向给定的航道。为此,使飞机倾斜产生侧向力,在消除侧向距离偏差的同时,使飞机的速度

相关文档
最新文档