静电纺丝与纳米纤维
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
纳米纤维是一种新型的纤维材料,其优异的性能,潜在的用途引起了各个领域的重视。静电纺丝作为一种生产纳米纤维的方法,有着简单,低成本,纤维形貌可控等特点。本文将对纳米纤维与静电纺丝的发展历史,通过控制纳米纺丝工艺参数制造形貌可控的纤维进行阐述,并对静电纺丝法制备纳米纤维进行展望。关键词:静电纺丝,纳米纤维,形貌,工艺参数
1 绪论
1.1 纳米纤维简介
从古至今,人类从未停止对微观世界的探索。光学显微镜的发明使我们可以观察次微米级的物质特征;1906年,英国物理学家汤姆逊发现电子,并提出原子的枣糕模型;1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。1933年,德国人发明第一台电子显微镜,人类开始可以对纳米级微观世界进行直接的观察。纳米技术由此孕育而生。纳米技术是一门前沿交叉学科,其涉及物理,化学,生物等各个学科,在纳米尺度上研究物质的结构性能与制备。有人预言,纳米技术将成为21世纪的主导,将带来一大批产业革命,其意义不亚于近现代的三次工业革命[1]。
通常人们将长度比直径大千倍以上且具有一定柔韧性和强力的纤细物质统称为纤维。纤维广泛存在于我们生活的各个角落,例如我们穿的衣物。最初的纤维主要来源于自然界,例如棉,麻等植物纤维以及动物毛发等动物纤维。随着科技的发展,人类逐渐掌握了合成纤维的制备技术。合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质如石油、煤、天然气、石灰石或农副产品,用化学合成与机械加工的方法制成纤维。如聚酯纤维(涤纶)、聚酰胺纤维(锦纶或尼龙)、聚乙烯醇纤维(维纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚氯乙烯纤维(氯纶)等。由于日常生产生活对纤维的性能要求越来越高,纤维的制造技术就成了纺织和化工工业关注的重点[2]。
纳米技术的发展不可避免的引起了合成纤维研究者的注意,纳米纤维由此诞生。纳米纤维尺寸效应非常明显,在声、光、磁、电、热等方面表现出许多独特
的性能,受到广泛的关注。将在航空航天、能源、电子、医疗等各个领域发挥作用。然而传统的纤维纺丝纺丝例如熔融纺丝、溶液纺丝等得到的纤维直径只有5-500um,无法得到直径小于100nm的纤维。因此一种新的纺丝方法孕育而生。
1.2 静电纺丝简介
静电纺丝一词来源于electrospinning。1934年,Formhals[3]发明了利用高压电场的作用进行纺丝的设备并申请了专利。这被认为是静电纺丝研究的开端。静电纺丝是借助于高压电场的作用,使得高聚物溶液带电,当液滴表面的电荷斥力大于表面张力时,就会喷射出聚合物的微小液体流,简称“射流”,这些射流沉积在收集板上,得到聚合物纤维。早在1882年,Rayleigh就研究了带电液体的相关性质,他认为当液体表面的电荷斥力大于表面张力时,就会有射流产生,并从理论上给出了产生射流的条件[4]。在Formhals发表专利后,静电纺丝作为一种新型的制备纤维的方法引起了人们的注意,Taylor[5]发现随着电压的升高,在带电液滴尖端会出现一个半球形的悬垂液滴,随后这个液滴会变成圆锥形,电荷继续聚集达到一定浓度时就会有射流在圆锥尖端射出,这种现象被称为“泰勒锥”,同时taylor还计算出这个锥角为49.3°。然而,静电纺丝研究的热潮在20世纪80年代才到来。在纳米技术的推动以及对纳米纤维制造的需求,使得人们开始关注静电纺丝技术,静电纺丝技术由此得到迅速发展并得到各国各个课题组的重视。1971年,Baumgarten[6]对丙烯酸的二甲基甲酰胺溶液进行静电纺丝,制的了直径小于1um的纤维。1977年,Martin等[7,8]对多组分溶液静电纺丝进行了研究,一种是具有多种溶剂的溶液用单个喷头纺出,另一种则是同时用多个喷头纺出聚合物纤维收集在一起,验证了多组分溶液进行静电纺丝的可行性。我国对静电纺丝的研究相对较晚,2000年,张锡玮[9]研究了用静电纺丝法纺制纳米级聚丙烯腈纤维毡的方法,分析了纺丝工艺条件与纤维的直径及初生纤维的溶剂残留量的关系并探讨了采用二甲基甲酰胺及适量的丙酮为复合溶剂对纤维性能的影响。2004年,袁晓燕等[10]以丙酮为溶剂,用静电纺丝法,制备了聚丙交酯(PLA)及其与己内酯共聚物(PUA-CL)的超细纤维。考察了溶剂、电压、溶液质量分数及流量对超细纤维形貌和直径的影响。
2静电纺丝加工参数
在进行静电纺丝加工受众多因素的影响,大体上可分为溶液性质和加工参
数。
2.1溶液性质对静电纺丝的影响
2.1.1 聚合物的相对分子质量
聚合物的相对分子质量是聚合物本身的一种重要参数,由于它直接影响到聚合物溶液的流动性能和电学性能,因此也是影响静电纺丝的一种重要参数。一般来说,相对分子质量越高,高分子链的链长越长,也越溶液缠结,溶液粘度也越大。高分子链进行缠结使聚合物溶液具有一定的粘度,是聚合物溶液能过进行静电纺丝的必要条件。这是因为在射流的过程中,要保证射流的连续性,防止射流断裂。分子链缠结,沿射流方向进行取向,就可以避免射流发生断裂得到珠粒纤维。Koski[11]等人研究了聚乙烯醇相对分子质量对静电纺丝形貌的影响,发现在聚合物容易浓度一定的情况下,当聚乙烯醇的相对分子质量为9000-10000时,静电纺丝得到的纤维为珠粒纤维,这说明纤维在纺丝过程中发生了断裂,聚合物分子链在纺丝过程中没有取向完全;当相对分子质量达到13000-23000时,静电纺丝得到了无珠粒的纤维,这表明此时的纤维没有断裂,分子链在纺丝过程中由于拉伸的作用取向完全。
由此可以看出,分子链在溶液中的缠结程度直接影响到纤维中珠粒的形成。高分子量的聚合物更容易缠结,所以在较低浓度时就能静电纺丝,与此相反低分子量的聚合物需要在较高的浓度下才能进行静电纺丝。
2.1.2 聚合物溶液的浓度
在聚合物的相对分子质量固定时,在其他条件不变的情况下,聚合物溶液浓度就成了影响聚合物分子链缠结的决定性的因素。聚合物以分子状态分散在溶剂中所形成的均相体系称为高分子溶液。一般将溶液的浓度低于1%称为稀溶液,对于稀溶液,随着浓度的提高,孤立存在的无规线团分子开始相互接触,继而交叠,形成所谓的“亚浓溶液”[12]。随着浓度的增加,聚合物溶液的黏度也会增加。在1971年,Gupta[13]就研究了聚合物浓度和黏度对静电纺丝形貌的影响,证实了当聚合物溶液是稀溶液时,由于分子链没有缠结,得到的是聚合物珠粒;加大浓度,聚合物分子链发生缠结,得到了含有珠粒的聚合物纤维;当溶液浓度继续增大,就得到了不含有珠粒的聚合物纤维。何晨光[14]等研究静电纺丝不同参数对PLGA纤维形貌的影响,发现浓度对形貌的影响最大,流速次之,而电场强度相