关于针对浅谈高考中的数学建模问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HR Planning System Integration and Upgrading Research of

A Suzhou Institution

浅谈高考中的数学建模问题

宁波鄞州正始中学数学组—王伍成

函数是高中数学的主要内容,涉及函数的应用问题,题源丰富,背景深刻,题型新颖,解法灵活,是历年高考命题的热点之一,同时也是考生失分较多的一种题型。应用题与现实生活联系密切,它不仅能培养学生分析问题和解决实际问题的能力,还能提高学生的思维素质。

一般来说,高考中的函数应用题往往是以现实生活为原型设计的,其目的在于考查学生对数学语言的阅读、理解、表达与转化能力,求解时一般按以下几步进行:(1)阅读理解、认真审题;(2)利用数学符号,建立数学模型;(3)利用数学的相关方法将得到的常见数学问题(即数学模型)予以解答,求得结果。而解答这类问题的要害就在于理解题意,建立恰当的数学模型将问题转化为数学问题。

下面略举数例谈谈函数建模在生活和高考中的应用。

1、优化问题实际问题中的“优选”“控制”等问题,常需建立“不等式模型”

或“线性规划”问题解决

例1、(1996年全国高考题)某地现有耕地10000 公顷,规划l0年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?

(粮食单产=总产量/总面积,人均粮食占有量=总产量/总人口数)。

(平均增长率问题:如果原来人口的基础数为N,平均增长率为p,则对于时间x的人口量为y=N(1+p)x.)

分析:人口是以年增长率计算,土地是以每年减少的亩数计算,因此可以这样理解:人口是以几何级数(等比数列)增长,土地是以算术级数(等差数列)减少。本题的解答关键是建立数学模型,设现在总人口为p人时,10年后总人口为

p(1+0.01)10;现在人均粮食占有量为bt(吨)时,10年后则为6(1+10%)t;现在耕地共104公顷,设每年允许减少xha时,10年后耕地将共有(104一l0x) 公顷;现有单产为Mt吨/公顷,10年后单产为M×(1+22%)t/公顷。设耕地平均每年至多只能减少x公顷,又设该地区现有人口为p人,粮食单产为M吨/公顷。

解:依题意得不等式

答:按规划该地区耕地平均每年至多只能减少4公顷。

本题也可属于预测问题,通过建立数列模型和不等式模型来解决问题。

2、最(极)值问题工农业生产、建设及实际生活中的极限问题常设计成“函

数模型”,转化为求函数的最值。

例2、(2007年福建高考)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(35

a

≤≤)的管理费,预计当每件产品的售价为x元(911

x

≤≤)时,一年的销售量为2

(12)x

-万件.

(Ⅰ)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值()

Q a

分析:总利润=每一件的利润×销售量=(每一件的售价-成本-管理费)×销售量解:(Ⅰ)分公司一年的利润L(万元)与售价x的函数关系式为:

2

(3)(12)[911]

L x a x x

=---∈

,,.

(Ⅱ)2

()(12)2(3)(12)

L x x x a x

'=-----

(12)(1823)

x a x

=-+-.

令0

L'=得

2

6

3

x a

=+或12

x=(不合题意,舍去).

35

a

≤≤,

228 86

33

a

∴+

≤≤.

2

6

3

x a

=+两侧L'的值由正变负.

所以(1)当

2

869

3

a

+<

≤即

9

3

2

a<

≤时,

2

max (9)(93)(129)9(6)

L L a a ==---=-.

(2)当2289633a +≤≤即952

a ≤≤时, 23

max 2221(6)63126433333L L a a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=+=+---+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以399(6)32()1943532a a Q a a a ⎧-<⎪⎪=⎨⎛⎫⎪- ⎪⎪⎝⎭

⎩, ≤,, ≤≤ 答:若932

a <≤,则当每件售价为9元时,分公司一年的利润L 最大,最大值()9(6)Q a a =-(万元);若952a ≤≤,则当每件售价为263a ⎛⎫+ ⎪⎝

⎭元时,分公司一年的利润L 最大,最大值3

1()433Q a a ⎛⎫=- ⎪⎝⎭

(万元) 本题利用导数来求三次函数的最值。

3、 预测问题 经济计划、市场预测这类问题通常设计成“数列模型”来解决 例3、(2002年全国理科)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆? 解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则

301=b ,x b b +⨯=94.012

对于1>n ,有

)94.01(94.0 94.0211x b x

b b n n n ++⨯=+⨯=-+

所以)94.094.094.01(94.0211n n n x b b +++++⨯=+

x b n

n

06.094.0194.01-+⨯= n x x 94.0)06

.030(06.0⨯-+= 当006

.030≥-x ,即8.1≤x 时 3011=≤≤≤+b b b n n 。

相关文档
最新文档