高等数学函数的极值及其求法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
例2 求出函数 f ( x) x3 3x2 24x 20 的极值. 解 f ( x) 3x2 6x 24 3( x 4)(x 2) 令 f ( x) 0, 得驻点 x1 4, x2 2. f ( x) 6x 6, f (4) 18 0, 故极大值 f (4) 60,
(3)如果当 x ( x0 , x0 )及 x ( x0 , x0 )时, f '( x)
符号相同,则 f ( x)在x0 处无极值.
y
y
o
x0
xo
x0
x (是极值点情形)
6
y
o
x0
x
求极值的步骤:
y
o
x0
x
(不是极值点情形)
(1) 求导数 f ( x);
(2) 求驻点,即方程 f ( x) 0的根; (3) 检查 f ( x) 在驻点左右的正负号,判断极值点;
a o x1
x2 x3
x4
b x5 x6
x
y
y
o
x0
x
Hale Waihona Puke Baidu
o
x0
x
2
定义 设函数f ( x)在区间(a,b)内有定义, x0是 (a , b)内的一个点,
如果存在着点x0的一个邻域,对于这邻域内的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极大值;
但函数的驻点却不一定是极值点.
例如, y x3, y x0 0, 但x 0不是极值点.
4
注 ①这个结论又称为Fermat定理
②如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号
③不可导点也可能是极值点
可疑极值点:驻点、不可导点
可疑极值点是否是真正的极值点,还须进一步 判明。由单调性判定法则知,若可疑极值点的左、 右两侧邻近,导数分别保持一定的符号,则问题 即可得到解决。
函数的极值及其求法
由单调性的判定法则,结合函数的图形可知, 曲线在升、降转折点处形成“峰”、“谷”,函 数在这些点处的函数值大于或小于两侧附近各点 处的函数值。函数的这种性态以及这种点,无论 在理论上还是在实际应用上都具有重要的意义, 值得我们作一般性的讨论。
1
一、函数极值的定义
y
y f (x)
5
定理2(第一充分条件)
(1)如果 x ( x0 , x0 ),有 f '( x) 0;而 x ( x0 , x0 ), 有 f '( x) 0,则 f ( x)在x0 处取得极大值.
(2)如果 x ( x0 , x0 ),有 f '( x) 0;而 x ( x0 , x0 ) 有 f '( x) 0,则 f ( x)在x0 处取得极小值.
则 f ( x) 2x 2a ex (不易判明符号) f ( x) 2 ex 令 f ( x) 0 得 x ln 2
当 x ln 2 时, f ( x) 0 当 x ln 2 时, f ( x) 0 x ln 2是 f ( x)的一个极大值点 而且是一个最大值点,
f ( x) f (ln2) 2ln 2 2a 2 0
证
(1)
f
( x0 )
lim
x0
f
( x0
x) x
f ( x0 ) 0,
故f ( x0 x) f ( x0 )与x异号,
当x 0时, 有f ( x0 x) f ( x0 ) 0,
当x 0时, 有f ( x0 x) f ( x0 ) 0,
所以,函数 f ( x)在x0 处取得极大值
极
f (x)
大
值
小 值
极大值 f (1) 10, 极小值 f (3) 22.
8
f ( x) x3 3x2 9x 5图形如下
M
m
9
定理3(第二充分条件)设 f ( x)在x0 处具有二阶导数, 且 f '( x0 ) 0, f ''( x0 ) 0, 那末 (1)当 f ''( x0 ) 0时, 函数 f ( x)在x0 处取得极大值; (2)当 f ''( x0 ) 0时, 函数 f ( x)在x0 处取得极小值.
解
f
(
x)
2
(
x
1
2) 3
( x 2)
3
当x 2时, f ( x)不存在. 但函数f ( x)在该点连续.
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
13
例4 证明x 0时, x2 2ax 1 e x (a 0)
证 记 f ( x) x2 2ax 1 e x
f (2) 18 0, 故极小值 f (2) 48. f ( x) x3 3x2 24x 20 图形如下
11
M
m
注意: f ( x0 ) 0时, f ( x)在点x0处不一定取极值, 仍用定理2.
12
注意:函数的不可导点,也可能是函数的极值点.
2
例3 求出函数 f ( x) 1 ( x 2)3的极值.
如果存在着点x0的一个邻域,对于这邻域内的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极小值.
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
3
二、函数极值的求法
定理1(必要条件) 设 f ( x)在点x0 处具有导数,且 在 x0处取得极值,那末必定 f '( x0 ) 0. 定义 使导数为零的点(即方程 f ( x) 0 的实根)叫 做函数 f ( x) 的驻点. 注意: 可导函数 f ( x) 的极值点必定是它的驻点,
(4) 求极值.
7
例1 求出函数 f ( x) x3 3x2 9x 5 的极值. 解 f ( x) 3x2 6x 9 3( x 1)(x 3) 令 f ( x) 0, 得驻点 x1 1, x2 3. 列表讨论
x (,1) 1 (1,3) 3 (3,)
f ( x)
0
0
极
x 0时, f ( x)
14
f ( x) f (0) 0 即 x2 2ax 1 e x
例5 设f ( x )连续,且f ( a )是f ( x )的极值,问 f 2( a )是否是 f 2( x )的极值
证 分两种情况讨论 ① 设 f ( x) f (a),且f (a) 0
0,使当 x (a ,a )时,有