最新版高中数学课件3.1.1变化率与导数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在(2)题中,ΔΔxy=fxx22--xf1x1=f44.1.1--4f4,它表示抛物 线上点 P0(4,39)与点 P2(4.1,40.92)连线的斜率.
[点拨] 求函数 f(x)的平均变化率的步骤是: (1)根据 x1 和 x2 值写出自变量的增量 Δx; (2)由 Δy=f(x2)-f(x1)=f(x1+Δx)-f(x1)计算函数增量;
练 3 求函数 y=2x2+4x 在 x=3 处的导数.
[解] 法一:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3) =12Δx+2(Δx)2+4Δx =2(Δx)2+16Δx, ∴ΔΔxy=2Δx2Δ+x 16Δx=2Δx+16. y′|x=3=Δlixm→0ΔΔxy=Δlixm→0(2Δx+16)=16.
中,平均速度是( )
A.4
B.4.1
C.0.41
D.-1.1
解析: v =ΔΔst=8+2.21.21--28+22=2.102-.1 22=4.1, 答案:B
3.函数 f(x)在 x=x0 处的导数可表示为( ) A.f′(x0)=Δlixm→0fx0+ΔΔxx-fx0 B.f′(x0)= lim [f(x0+Δx)-f(x0)]
(1)求函数的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0;
(3)取极限,得导数 f′(x0)=Δlixm→0ΔΔxy.
3.对导数概念的理解 某点导数即为函数在这点的瞬时变化率,含着两层含 义:
(1) Δlixm→0ΔΔxy存在,则称 f(x)在 x=x0 处可导并且导数即为 极限值;
=12[f′(x0)+f′(x0)]=f′(x0).
[点拨] 在导数的定义中,增量 Δx 的形式是多种多样 的,但不论 Δx 选择哪种形式,Δy 也必须选择与之相对应的 形式.利用函数 f(x)在 x=x0 处可导的条件,可以将已给定 的极限式恒等变形为导数定义的形式.概念是解决问题的重
要依据,只有熟练掌握概念的本质属性,把握其内涵与外延, 才能灵活地应用概念进行解题.
解法二:(导函数的函数值法) ∵Δy=x+4Δx2-x42=-4xΔ2xx2+x+ΔxΔx2 , ∴ΔΔxy=-x422xx++ΔΔxx2. ∴y′=Δlixm→0ΔΔxy=-Δlixm→0x422xx++ΔΔxx2=-x83. ∴f′(2)=y′|x=2=-1. [点拨] 根据导数的定义求导数是求函数的导数的基本 方法.
练 2 以初速度 v0(v0>0)竖直上抛物体,t 秒时的高度为 s(t)=v0t-12gt2,求物体在时刻 t0 的瞬时速度.
[解] 因为 Δs=v0(t0+Δt)-12g(t0+Δt)2-(v0t0-21gt20)= (v0-gt0)Δt-12g(Δt)2,所以ΔΔst=v0-gt0-12gΔt,当 Δt 趋近于
当 Δx=12时,平均变化率的值为 8+2×21=9.
瞬时速度 例 2 一质点的运动方程为 s=8-3t2,其中 s 表示位移, t 表示时间. (1)求质点在[1,1+Δt]这段时间内的平均速度; (2)求质点在 t=1 时的瞬时速度.
[分析] 先求出 Δs,再求ΔΔst,就得到了平均速度;当 Δt 无限趋近于 0 时,ΔΔst的极限即为所求的瞬时速度.
[分析] 给出某抽象函数在某点 x0 处可导的条件,求另 一抽象函数在某点 x0 处的导数,或求另一抽象函数在某点 x0 处的极限.
[解] (1)原式=Δlixm→0fx0--Δ-xΔ-xfx0 =--lΔixm→0fx0--ΔxΔ-x fx0(Δx→0 时,-Δx→0) =-f′(x0).
(2)原式=lhi→m0 fx0+h-fx02+hfx0-fx0-h =12[lhi→m0 fx0+hh-fx0+lhi→m0 fx0--hh-fx0] =12[f′(x0)+l-him→0 fx0--hh-fx0]
答案:A
4.已知函数 y=f(x)=-x2+x 的图象上一点(-1,-2) 及邻近一点(-1+Δx,-2+Δy),则ΔΔxy=______.
解析:Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+ Δx)-(-2)=-(Δx)2+3Δx,所以ΔΔxy=-ΔxΔ2x+3Δx=3-Δx, 故应填 3-Δx.
§3.1变化率与导数 3.1.1~3.1.2变化率问题 导数的概念
1.通过实例,领悟由平均变化率到瞬时变化率刻画现实 的过程.
2.了解导数概念的实际背景,知道瞬时变化率就是导数. 3.体会导数的思想及其内涵,并能运用.
1.平均变化率
fx2-fx1
函数 y=f(x)从 x1 到 x2 的平均变化率为①____x_2_-__x_1___,
答案:3-Δx
5.求函数 y=x2 在点 x=1 处的导数.
解:Δy=(1+Δx)2-1=2Δx+(Δx)2, ∴ΔΔxy=2+Δx.y′|x=1=Δlixm→0(2+Δx)=2.
1.函数的平均变化率的理解
定义中的 x1,x2 是指其定义域内不同的两个数,记 Δx =x2-x1,Δy=f(x2)-f(x1),则当 Δx≠0 时,fxx22--xf1x1=ΔΔxy 称作函数 y=f(x)从 x1 到 x2 的平均变化率,理解平均变化率 应注意以下几点:
法二:f′(x)=Δlixm→02x+Δx2+4xΔ+xΔx-2x2+4x =Δlixm→04x·Δx+2ΔΔxx2+4Δx =lim(4x+2Δx+4)=4x+4,
Δx→0
∴y′|x=3=f′(3)=4×3+4=16.
导数的简单应用
例 4 设函数 f(x)在点 x0 处可导,试求下列各极限的值. (1) Δlixm→0fx0-ΔΔxx-fx0; (2) lhi→m0fx0+h2-hfx0-h.
(1)函数 f(x)在 x1,x2 处有定义; (2)x2 是 x1 附近的任意一点,即 Δx=x2-x1≠0,但 Δx 可正可负;
(3)注意变量的对应,若 Δx=x2-x1,则 Δy=f(x2)-f(x1), 而不是 Δy=f(x1)-f(x2);
(4)平均变化率可正可负,也可为零.
2.根据导数的定义,求函数 y=f(x)在 x0 处的导数的步 骤
A.f(x0+Δx) B.f(x0)+Δx C.f(x0)·Δx D.f(x0+Δx)-f(x0)
解析:分别写出 x=x0 和 x=x0+Δx 对应的函数值 f(x0) 和 f(x0+Δx),两式相减,就得到了函数值的改变量 Δy=f(x0 +Δx)-f(x0),故应选 D.
答案:D
2.若一质点按规律 s=8+t2 运动,则在时间段 2~2.1
(1)求当 x1=4,且 Δx=1 时,函数增量 Δy 和平均变化率ΔΔxy; (2)求当 x1=4,且 Δx=0.1 时,函数增量 Δy 和平均变化率ΔΔxy; (3)若设 x2=x1+Δx.分析(1)(2)题中的平均变化率的几何意义.
[解] f(x)=2x2+3x-5,
∴Δy=f(x1+Δx)-f(x1) =2(x1+Δx)2+3(x1+Δx)-5-(2·x21+3·x1-5) =2[(Δx)2+2x1Δx]+3Δx =2(Δx)2+(4x1+3)Δx.
[解] (1)质点在[1,1+Δt]这段时间内的平均速度为 ΔΔst=8-31+ΔtΔ2t-8+3×12=-6-3Δt. (2)由(1)知ΔΔst=-6-3Δt,当 Δt 无限趋近于 0 时, lΔitm→0ΔΔst=-6,所以质点在 t=1 时的瞬时速度为-6.
[点拨] 本例引导学生理解瞬时速度是物体在 t 到 t+Δt 这段时间内的平均速度ΔΔst当 Δt 趋近于 0 时的极限,即为 s 对 t 的导数.对于作匀变速运动的物体来说,其位移对时间 的函数的导数就是其运动的速度对时间的函数,速度对时间 的函数的导数就是其运动的加速度对时间的函数,这是导数 的物理意义,利用导数的物理意义可以解决一些相关的物理 问题.
(1)当 x1=4,Δx=1 时,Δy=2+(4×4+3)×1=21, ∴ΔΔxy=211=21; (2)当 x1=4,Δx=0.1 时, Δy=2×0.12+(ቤተ መጻሕፍቲ ባይዱ×4+3)×0.1=0.02+1.9=1.92,
∴ΔΔxy=10.9.12=19.2;
(3)在(1)题中ΔΔxy=fxx22--xf1x1=f55--4f4,它表示抛物线 上 P0(4,39)与点 P1(5,60)连线的斜率.
3.函数 f(x)在 x=x0 处的导数 函数 y=f(x)在 x=x0 处的③__瞬__时__变__化__率___称为函数 y=
fΔΔ(xyx=)在④x_=_Δlix_xm→_00_处f_x_的0_+_导_Δ_数Δx_x_,-_记_f_作x_0_f.′(x0)或 y′|x=x0 ,即 f′(x0)=Δlixm→0
简记作:ΔΔxy.
2.瞬时变化率
函数 f(x)在 x=x0 处的瞬时变化率是
lim
Δx→0
ΔΔxy=②__Δli_xm→_0_f_x_0_+__Δ_Δx_x_-__f_.x0
思考探究 1. 物体在运动过程中,不论从哪一时刻起,当 Δt 相同 时,平均变化率一定相同吗?
提示:不一定.平均变化率等于在时间段内速度的变化 除以时间的变化,所以在匀速运动中,当 Δt 相同时,ΔΔvt 一 定相同,但在变速运动中却不一定,因为 Δt 相同,Δv 不一 定相同.
练 4 如下图,函数 f(x)的图象是折线段 ABC,其中 A, B,C 的坐标分别为(0,4),(2,0),(6,4),则 f[f(0)]=____2____; Δlixm→0f1+ΔΔxx-f1=__-__2__.(用数字作答)
[解析] 由图及题中已知可得折线的方程为 f(x)=-x-22x,-22<x,≤06≤. x≤2, f(0)=4,f[f(0)]=f(4)=2, ∵直线 AB 和 BC 的斜率分别为-2 和 1, ∴Δlixm→0f1+ΔΔxx-f1=-2.
思考探究 2. 在匀速运动过程中,物体在任一处的导数有什么关 系?
提示:相等.令 v=3t,在任一时刻 t0 处, f′(t0)=lΔitm→0ΔΔxy=lΔitm→03t0+ΔΔtt-3t0=3. 所以在匀速运动中,在任一时刻 t0 处的导数都相等.
1.函数 y=f(x)的自变量 x 由 x0 改变到 x0+Δx 时,函数 值的改变量 Δy 为( )
Δx→0
C.f′(x0)=f(x0+Δx)-f(x0) D.f′(x0)=fx0+ΔΔxx-fx0
解析:考查导数的定义,B 中 f′(x0)=Δlixm→0[f(x0+Δx)- f(x0)],右边的式子表示函数值的变化量的极限.C 中 f′(x0) =f(x0+Δx)-f(x0),右边的式子表示函数值的变化量;D 中 f′(x0)=fx0+ΔΔxx-fx0,右边的式子表示函数的平均变化 率.故应选 A.
(3)求出比值ΔΔxy就是函数 f(x)由 x1 变化到 x2 时的平均变 化率.它的几何意义是过图象上两点 P1(x1,f(x1))、P2(x2, f(x2))的直线斜率.
练 1 求函数 y=2x2+5 在区间[2,2+Δx]上的平均变化 率;并计算当 Δx=21时,平均变化率的值.
[解] 因为 Δy=2×(2+Δx)2+5-(2×22+5)=8Δx+ 2(Δx)2,所以平均变化率为ΔΔxy=8+2Δx.
(2) Δlixm→0ΔΔxy不存在,则称 f(x)在 x=x0 处不可导.
注意:令 x=x0+Δx,得 Δx=x-x0,
于是
f′(x0)=
lim
x x0
fx-fx0 x-x0
与定义中的 f′(x0)=Δlixm→0fx0+ΔΔxx-fx0意义相同.
函数的平均变化率 例 1 已知函数 f(x)=2x2+3x-5.
0 时,ΔΔst趋近于 v0-gt0,故物体在时刻 t0 的瞬时速度为 v0 -gt0.
导数的概念 例 3 求函数 y=x42在 x=2 处的导数.
[分析] 通常以某一具体函数为载体,利用求导的“三 步曲”,进行计算.
[解] 解法一:(导数定义法) ∵Δy=Δx+4 22-242=Δx+4 22-1=-ΔΔxx2++24Δ2x, ∴ΔΔxy=-ΔΔxx++242. ∴Δlixm→0ΔΔxy=-Δlixm→0ΔΔxx++242=-1.
相关文档
最新文档