钢材的控制轧制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢材的控制轧制
苏妧
材料成型及控制工程12
摘要: 近三十年以来,控制轧制和控制冷却技术在国外得到了迅速的发展,各国先后开展了多方面的理论研究和应用技术研究,并在轧钢生产中加以利用,明显的改善和提高了钢材的强韧性和使用性能,为了节约能耗、简化生产工艺和开发钢材新品种创造了有力条件。目前国内外大多数宽厚板厂均采用控制轧制和控制冷却工艺,生产具有高强度、高韧性、良好焊接性的优质钢板。控制轧制和控制冷却工艺的开发与理论研究进一步揭示了热变形过程中变形和冷却工艺参数与钢材的组织变化、相关规律以及钢材性能之间的内在关系,充实和形成了钢材热变形条件下的物理冶金工程理论,为制定合理的热轧生产工艺提供理论依据。关键词:宽厚板厂,控制轧制,控制冷却。
Abstract:for nearly 30 years, controlled rolling and controlled cooling technology obtained the rapid development in foreign countries, and countries successively carried out various theoretical research and applied technology research, and tries to use in the production of steel rolling, the obvious improve and enhance the tenacity of steel and the use of performance, in order to save energy consumption, simplify production process and development of new steel varieties created favourable conditions. Most lenient plate factory at home and abroad adopt controlled rolling and controlled cooling technology, production has high strength, high toughness and good weldability of high qualified steel plate. Controlled rolling and controlled cooling technology development and theory research of further reveals that the thermal deformation in the process of deformation and cooling process parameters and the change of the organization of the steel, the relevant laws and the internal relations between steel performance, enrich and formed steel thermal deformation under the condition of physical metallurgy engineering theory, to provide theoretical basis for reasonable hot-rolling process.
Keywords: generous plate factory, controlled rolling and controlled cooling.
1.引言:
20世纪之前,人们对金属显微组织已经有了一些早期研究和正确认识,已经观察到钢中的铁素体、渗碳体、珠光体、马氏体等组织。20世纪20年代起开始有学者研究轧制温度和变形对材料组织性能的影响,这是人们对钢材组织性能控制的最初尝试,当时人们不仅已经能够使用金相显微镜来观察钢的组织形貌,而且还通过X射线衍射技术的使用加深了对金属微观组织结构的认识。
1980年OLAC层流层装置投产,控轧控冷在板带、棒线材等大面积应用,技
术已成熟,理论进展发展迅速。
2.控制轧制的阶段:
2.1 控制轧制的阶段划分通常将控制轧制分为3个阶段:
奥氏体再结晶阶段(>1 000℃)。在这一温度范围内,奥氏体变形和再结晶同时进行,因再结晶而获得的细小奥氏体晶粒,将导致铁素体晶粒的细化。
奥氏体非再结晶阶段(950℃~Ar3)。在这一温度范围内,形变使奥氏体晶粒被拉长,在伸长而未再结晶的奥氏体内形成高密度形变孪晶和形变带,同时微合金碳、氮化物因应变诱导析出,因而增加了铁素体的形核位置,细化了铁素体晶粒。
(γ+α)两相区轧制阶段(Ar3~Ar1)。在这一温度范围内,奥氏体和铁素体均发生变形,形成亚结构。亚晶强化使强度进一步提高。实践表明,非再结晶区变形突破了再结晶区所能达到的奥氏体晶粒尺寸极限,在一定的变形量下,非再结晶的晶粒细化也会达到某一极限,这一极限只有通过两相区变形才能突破。
3.控制轧制的主要工艺
轧制的主要工艺参数有:加热温度、加热时间、开轧温度、轧钢的变形量、精轧开轧温度、中间坯厚度和终轧温度。
3.1加热温度
加热温度对Nb、V在奥氏体中的固溶量有很大的影响,在Nb、V能固溶的范围内尽量采用低温加热,使高温奥氏体晶粒不致于粗化,从而改善韧性。若加热温度过低,将存在部分未溶微合金碳氮化物,由于颗粒大于1000,不可能产生抑制
奥氏体再结晶的作用。适当提高再加热温度,使微合金元素的固溶量增加从而提高钢的强度和有效提高奥氏体的再结晶终止温度。若再加热温度过高,则会使原始奥氏体晶粒粗化,从而使相变后的铁素体晶粒更粗大,不利于钢的韧性。另外,板坯在炉加热时间对管线钢的探伤合格率有一定的影响。
3.2轧钢的变形量
轧钢过程中存在再结晶区域、部分再结晶区域和未再结晶区域。为了细化铁素体晶粒,在γ再结晶区进行多道次大变形量(每道次变形量必须大于再结晶临界变形量)高温粗轧,通过形变/再结晶反复进行使奥氏体晶粒充分细化;同时还须保证粗轧结束时处于完全再结晶区,不能进入部分再结晶区,以免产生混晶组织。根据变形温度可知,此时变形处在部分再结晶区,奥氏体再结晶数量急剧增加。同时变形量的增加使晶粒变形加剧,晶粒因发生畸变增加了储存能,发生再结晶时形核的驱动力增加,促进了再结晶的发生,使奥氏体晶粒更加细小,并最终获得细小的铁素体晶粒。
在γ未再结晶区精轧时必须保证较大的累积变形量,这样才可使奥氏体晶粒充分压扁,在拉长的奥氏体晶粒内产生高密度的形变孪晶和形变带,同时微合金元素的碳氮化物因应变诱导析出,从而为铁素体转变提供更多的有利形核位置。