台风预测与模拟.pptx
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General model Power2:
f(x) = a*x^b+c
Coefficients (with 95% confidence bounds):
a=
186.5 (-83.6, 456.6)
b=
-0.5076 (-1.107, 0.09152)
c=
-1.913 (-24.99, 21.17)
2 给出此后 72 小时内的该台风相关预报数据并画出路径图
3 给出福州 10-100 年内可能遭遇的最大风力
对于问题一,根据附件 1 和附件 2,可知它们的联系是经纬度,即位置。但是,附 件 1 和附件 2 的时间分隔并不一致。因此,首先把台风 B 中心的经纬度以半小时为单位 的形式算出来,然后分别求出台风 B 中心和观察点的距离;然后利用拟合工具箱,分别 得出距离与气压、距离与风速的关系式;最后算出台风 A 中心到福州的距离,把该距离 代入所得关系式,即可得出福州此时的气压和风速。
b=
-0.615 (-1.226, -0.004049)
c=
1005 (991.7, 1018)
Goodness of fit: SSE: 99.83 R-square: 0.8642
Adjusted R-square: 0.8552 RMSE: 1.824
学海无 涯
图 1 距离与气压关系拟合图
(2)距离与风速关系式的结果:
都分布在这个均值的上下,我们可以求出其总的误差平方和S总 。计算公式为:
S ( y y)2
总
i
(1)
如果通过线性回归模型拟合的值为 yˆi,那么可以求出回归的误差平方和 S回 。计算
公式为:
S回 (yˆi-y)2
(2)
可以认为回归的误差平方和 S回 是 S总 的一部分,也就是说回归模型部分解释了实际观测
学海无涯
对于问题三,主要在于预测福州10-100年内可能遭遇的最大风力,首先收集福州近 年遭遇台风的具体情况,把所得数据作为训练样本,再利用广义神经网络得出预测样本, 即福州10-100年内可能遭遇的最大风力。
三、模型的假设
1 附件所给数据和我们查找的数据准确无误; 2 假设台风的行走路径没有障碍; 3 排除其他突发性情况,例如气流漩涡;
学海无涯
对台风的模拟与预测的研究
摘要
台风是我国东南沿海每年遭受的严重自然灾害之一,为了减少人民生命财产损失, 准确有效的台风预报显得尤为必要。本文围绕台风相关数据的预测、台风的路径图以及 预测福州10—100年内可能遭遇的台风的最大风力问题进行了讨论。对台风的预测建立 了神经网络预测模型,并对求解结果进行了详细的分析。
同理,风速与距离的关系式为
y2 186.50.5*07x6
1.913
(8)
把距离 x 760 代入得到福州此时的风速为 4.5195m/s。根据风力等级表[3],可知, 此时正为 3 级风。
2. 问题二
1. 模型理论
1、广义回归神经网络[5](GRNN)
广义回归神经网络是美国学者 Don-ald F.Spencht 在 1991 年提出的,它是径向基神 经网络的一种。GRNN 具有很强的非线性映射能力和柔性网络结构以及高度的容错性和
图 1 广义回归网络结构图源自输入层神经元的数目等于学习样本中输入向量的维数,各神经元是简单的分布单 元,直接将输入变量传递给模式层。
2 模式层
模式层神经元数目等于学习样本的数目n ,各神经元对应不同的样本,模式层神经 元传递函数为
pi
exp
(
X
Xi)T ( X
2 2
X
i)
i
1,2,...,n
2、GRNN 的网络结构
GRNN 在结构上与 RBF 网络结构相似。它是由四层构成,如图所示,分别为输入
层 、 模 式 层 、 求 和 层 和 输 出 层 。 对 应 网 络 输 入 X 1x , x2 , L, xn T , 其 输 出
为
Y y1, y 2, L, yn T。
学海无 涯
1 输入层
鲁棒性,适用于解决非线性问题。GRNN 在逼近能力和学习速度上较 RBF 网络有更强的
优势,网络最后收敛于样本量积聚较多的优化回归面,并且在样本数据较少时,预测效 果也较好。此外,网络还可以处理不稳定的数据。因此,GRNN 在信号过程、结构分析、 教育产业、能源、食品科学、控制决策系统、药物设计、金融领域、生物工程等各个领 域得到了广泛的应用。
2. 模型求解
利用拟合工具箱分别得到气压与距离、风速与距离的关系式。详细结果如下:(1) 气压与距离关系的结果
General model Power2:
f(x) = a*x^b+c
Coefficients (with 95% confidence bounds):
a=
-203.5 (-543.4, 136.4)
对于问题二,欲预测福州 11 时后 72 小时内的大气压和风速,并且画出路径图,这 需要该台风以往的数据。我们发现该台风在 11 时的参数与台风“龙王”11 时的路径参 数一致,因此,我们可以收集“龙王”的数据,以此作为基准,利用广义回归神经网络 方法,对福州 11 时后 72 小时内的大气压和风速进行预测。
针对问题一,首先把台风B中心的经纬度以半小时为单位的形式算出来,然后分别 求出台风B中心和观察点的距离;然后利用拟合工具箱,分别得出距离与气压的关系式:
y 203.5* x0.615 1005 和距离与风速的关系式: y 186.5* x0.5076 1.913 ;最后算出
1
2
台风A中心到福州的距离大致为760公里,把该距离代入所得关系式,即可得出福州此时 的气压为(1.0016e+03)百帕,风速为4.5195m/s。
为了减少人民生命财产损失,准确有效的台风预报显得尤为必要。请收集相关数据, 建立数学模型,完成下面问题。
问题1 请结合附件1和2,根据气象学和空气动力学原理,建立数学模型,给出此时福 州台风相关数据预测。
问题2 请收集相关数据,根据气象学和空气动力学原理,建立数学模型,给出此后72 小时内的该台风相关预报数据并画出路径图
四、符号说明
符号 y1
y2 x
意义 大气压
风速
台风A 中心与福州的距离
五、模型的建立与求解
1. 问题一
1. 数据处理
因为附件 1 和 2 的时间分隔不一致,附件 1 是以一小时为单位,而附件 2 是以半小 时为单位,因此,首先用分段线性插值把经纬度以半小时为单位的形式算出来。结果见 附录 1。然后,根据台风 B 中心与观察点 B 的经纬度,分别求出相对应的两地之间的距 离。结果见附录 2(包括距离、气压和风速)。
针对问题二,为了预测该台风此后72小时内的中心气压和最大风速,需要该台风以 往的数据,因此,我们首先收集了该台风相关的数据,然后运用广义回归神经网络模型, 对此后72小时内的中心气压和最大风速进行预测,得出结果,并作出该台风的路径图。 并且,为了更直接地看出预测数据与真实数据的误差,我们分别作出时间与气压、时间 与风速的关系图,从图中可看出,预测值与真实值出入不大,且路径走向一致。
学海无涯
是拟合的误差,如果拟合误差比较小,拟合效果就好,预测结果的信任程度就高。如果 拟合误差较大,拟合效果就不太好,严重时还必须重新考察历史数据、选择变量,再重 新拟合。为了评判误差产生程度,我们介绍两个基本定量。
1.R-square(确定系数)
如果因变量的一组统计观测数据 yi (i 1,2,n) 的平均值为 y ,所有统计观测数据值
X
)i2T( 它2X 对 X所)有 模, 式层神经元的输出进行算
术求和,其模式层与各神经元的连接权值为 1,传递函数为
n
SD Pi
i1
(10)
另一类计算公式为
n i1
Yi
exp
(
X
X
)Ti ( X
2 2
X
)
i
,它对所有模式层神经元进行
加权求和,模式层中第i 个神经元与求和层中第 j 个分子求和神经元之间的连接权值为
Goodness of fit: SSE: 142 R-square: 0.8672 Adjusted R-square: 0.8584 RMSE: 2.176
图 2 距离与风速关系拟合图
5.1.2 模型检验 (1)检验理论
线性回归预测是通过一组统计观测数据确定最优拟合线性关系,但我们需要对这种 关系拟合的效果好坏进行评判,这种评判通常称为模型检验[2]。评判的结论将直接影响 人们对线性回归模型的信任程度,从而也影响对预测结果的信任程度。评判的标准主要
第 i 个输出样本Yi 中的第 j 个元素,传递函数为
n
S Nj Yij Pi j 1,2,...,k
(11)
i1
学海无涯
(4)输出层 输出层中的神经元数目等于学习样本中输出向量的维数k ,各神经元将求和层的输
出相除,神经元 j 的输出对应估计结果 的第 j 个元素,即
yj
S Nj SD
j 1,2,...,k
(9)
神经元i 的输出为输入变量与其对应的样本 X 之间的 Euclid 距离平方
D 2 ( X X )T ( X X ) 的指数形式。式中, X 为网络输入变量; X 为第i 个神经元对
i
i
i
i
应的学习样本。
(3)求和层
求和层中使用两种类型神经元进行求和。
一类的计算公式为
n exp(Xi
i1
d2 RMSE i
(6)
n
式中: n 为测量次数; di 为一组测量值与真值的偏差。可以看出RMSE 越小越好。
(2)检验结果
学海无涯
1、在气压与距离的关系拟合结果中,R-square= 0.8642,RMSE=1.824,所以该模 型基本通过检验
2、在距离与风速的关系拟合结果中,R-square= 0.8672,RMSE=2.176,所以该模 型基本通过检验
问题3
台风对沿海建筑的破坏尤为明显,和抗震等级设计一样,为了设计高层建筑的 抗风能力,需要估算建筑物设计年限内可能遭遇的最大台风风力。请收集相关 数据,根据气象学和空气动力学原理,建立数学模型,给出福州10-100年内可 能遭遇的最大风力。
二、问题分析
我们共需要解决三个问题:
1 给出此时福州台风相关数据预测;
R S回
(5)
S总
可以看出, R 的值在0 ~ 1之间,如果 R 的值接近1,说明实际数据对均值的绝大部 分都可以由回归明显来解释,模型的拟合效果就越好;如果 R 的值接近零,说明实际数 据对均值的绝大部分都不能由回归明显来解释,即模型拟合得不好。
2. RMSE (均方根)
均方根误差亦称,其定义为,在有限测量次数中,均方根误差常用下式表示:
一、问题重述
台风是热带气旋的一个类别;按世界气象组织定义:热带气旋中心持续风速达到 12 级(即每秒 32.7 米或以上)称为飓风(hurricane),飓风的名称使用在北大西洋及东太 平洋;而北太平洋西部(赤道以北,国际日期线以西,东经 100 度以东)使用的是台风 (typhoon)。
台风是我国东南沿海每年遭受的严重自然灾害之一,台风水平结构分为台风眼区 域、最大风雨区以及外围区;垂直结构为下层流入层、中层过渡层及上层流出层。通常 在最大风雨层发生强风、强降雨;在下层区域吸收能量,形成低气压。台风会带来巨大降 水,同时也会带来巨大灾难,其形成的自然灾害种类包括风灾,潮灾以及水灾,其中以潮 灾造成的损失最为巨大。据统计,风暴潮造成损失居全世界之首[1]。
5.1.3 模型求解
根据台风中心 A 和福州的经纬度(119.28 o ,26.08 o ),得出两地之间的距离大约 为 760 公里。
根据上面拟合的结果,可得气压与距离的关系式为
y1 203.5* x 0.615 1005 (7) 把距离 x 760 代入得到福州此时的大气压为(1.0016e+03)百帕。
针对问题三,我们建立了广义回归神经网络模型,对福州10-100年内可能遭遇的最 大风力进行预测。首先把收集到的数据作为训练样本,利用广义回归神经网络模型求解, 最终预测出福州10-100年内可能遭遇的最大风速为:44.6721m/s,再根据风力等级划分 表确定出最大风力为:14级。
关键词
学 海 无涯
值对均值的偏离,而剩余部分为S剩 ,即
S剩 (yi -yˆ)i 2
因此可以解释同时也可以写成 S总 S回 S剩
(3) (4)
显然,回归模型拟合较好,则总的误差平方和 S总 越能够用回归的误差平方和S回 来
表示,模型所描述的线性关系就越准确。所以,我们定义确定性系数为回归的误差平方 和占总误差平方和的比例,即