漆酶来源与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漆酶来源与应用
万云洋1,2,杜予民2
1.中国石油大学(北京)资源与信息学院,北京(102249)
2.武汉大学资源与环境科学学院,武汉(430079)
E-mail :yunyangwan@
摘 要:本文对漆酶来源,包括动物、微生物和植物,尤其是我国的特产资源漆树及其他植
物漆酶,酶的稳定化及固定化,生物整治、对木质素的作用以及其各方面的应用作一综述。
关键词:漆酶,漆树,生物整治,木质素,固定化
漆酶(EC1.10.3.2),对-二酚:(双)氧氧化还原酶,又名酚酶,多酚氧化酶,漆酚氧化酶
和等,是一种含铜的糖蛋白氧化酶,是多铜氧化酶的一种[1]。
对漆酶的研究已有一百多年的
历史,是有记载以来开发最早的酶之一:1883年,日本人吉田在研究生漆液成份时发现这
种酶成份,但当时他误为淀粉酶物质(diastatic matter),1898年,法国人Bertrand 在研究越南
产漆液的时候,首次提出了漆酶(laccase)的概念并沿用至今[2-5];Reinhammar 等[6;7]、杜予民
等[8-12]对漆酶及漆树液全成份的分离纯化作了很好的工作;另外,熊野等[13;14]对漆酶反应机
理,黄葆同、甘景镐[15]等对中国漆酶化学的发展,Morpurgo(意大利)[16;17],Solomon(美国)
等[18-24]对漆酶铜原子中心的研究作出了各自的贡献。
漆酶虽然是研究史中的老酶,但其各种新功能也正在被发现和挖掘。
本文结合自身工作实践,专门就漆酶来源、特别是植物漆酶来
源和其各方面的应用研究作一综述,进一步推动漆酶(尤其是植物漆酶)研究的发展。
Figure 1. Dominating distribution of lacquer trees in the world.
1. 漆酶的来源
1.1植物漆酶
由上述可知,对漆酶的研究首先就是从漆树来源开始的。
漆树(Rhus vernicifera )
种属于
75 90 105120135 15015
30
45
被子植物亚门双子叶植物纲蔷薇亚纲无患子目漆树属(Toxicodendron)漆树科(Anacardiaceae),源产于我国,是我国的植物国宝。
从图1上可见,漆树现在世界上的分布主要在我国中西部以毛坝(东经109˚, 北纬30˚)为中心的地区,环我国东南的地区和国家(朝鲜,韩国,日本,越南,缅甸,泰国,柬埔寨,老挝等),并集中分布在如图红线所示的三角区域(东北至日本的八户,西北至不丹的锡金,南到越南胡志明)[25]。
目前全国被鉴定的漆树良种46个,生漆的产量和出口量均占世界总量的85%左右,其中湖北恩施的毛坝漆、陕西平利的牛王漆、浙江临安的严州漆享有世界声誉。
漆树漆酶是目前从植物源-漆树-提取的活性最高的漆酶,是我国的一种特产资源,我们对目前已知产漆酶的植物源作一概括,详见表1。
1.2 微生物漆酶
微生物漆酶,包括真菌漆酶和细菌漆酶,已经被大量的研究和报道[26-29] (表4),尤其是真菌漆酶,据估计,已经报道产漆酶真菌不下于1000种[30]。
现在各国对此研究相当多和非常的热,对于研究漆树漆酶很有借鉴作用。
目前报道的细菌漆酶来源有只有Bacillus sphaericus [31]、Azospirillum lipoferum[29;32]和地中海生海洋性细菌Alteromonas菌株[33]。
不过Alexandre[34]推断漆酶在细菌中也广泛存在,并正在被不断发现[35]。
1.3 动物漆酶
相对来讲,动物体中发现的漆酶很少。
目前有报道的有猪肾、麻蝇(Phormia cegina, Musca domestica, Lucilia sericata)、烟草天蛾(Manduca sexta)、绿头苍蝇(Calliphora vicina)、蚊子和双翅目的迁移类蝗虫,昆虫等[29;36-38],不过对于此类漆酶还是要小心对待,因为很有可能是一些具有类似催化性能的多酚氧化酶,而不是漆酶。
Table 1. Sources of plant laccases
Sources 中文名References
Rhus vernicifera 漆树
[25;39;40]
Rhus succedanea 木蠟树(安南漆)
Melanorrhoea usitata 缅甸连加斯
Melanorrhoea laccifera 高棉漆
Manifera indica 檬果(芒果)
[39;41]
Schinus molle 加州胡椒树
Pistacia palaestina 巴勒斯坦黄连木
Pleiogynium timoriense 帖木李
Banana 香蕉[42]
Peach 梨[43]
Grape 葡萄
[39]
Lactuca virosa 毒莴苣
Digitalis purpurea 毛地黄
Coffer bean 咖啡豆
Mungbean hypocotyls 绿豆胚轴[44]
Acer pseudoplatanus 悬铃木(大槭树)[45]
Pinus taeda 火炬松[46]
Populus trichocarpa 西部香脂杨
[47]
Populus euramericana 黄杨
Liriodendron lulipifera 马栗树[48]
Aesculus parviflora 小花七叶树[45]
Camella sinesis L. 茶[49]
Nicotiana tabacum 烟草[50]
Arabidopsis thaliana 拟南芥[48;51] Podocarpaceae 罗汉松[43]
Forsythia suspensa 连翘[52-54]
1.4 漆酶同工酶
在讨论漆酶来源的时候不能不讲漆酶同工酶,是研究漆酶另一个很重要的方面,是漆酶源的补充,也促进了漆酶研究的深入发展。
同工酶研究的重要性可以从几个方面体现。
首先,可以发现一些新类型的酶。
白漆酶和黄漆酶正是通过同工酶的研究而提出来的[55-57]。
其次,可以对漆酶底物专一性进行对比考察。
第三,对系统发育树研究。
Ranocha[47]在对杨属植物研究时报道了两种分子量分别为90kDa和110kDa的同工酶,并对它们进行了生化特性,分子克隆和表达研究,认为不同植物来源以及同种植物之间的漆酶序列同源性都很不同,p I 各不相同,体现了系统发育植物树的分散性。
漆酶同工酶的报道很多[58;59],尤其是真菌漆酶,几乎每一种被报道产漆酶的真菌,则必定含有几种同工酶[26;60;61]。
Antorini等人[62]从两种木质素分解真菌中分离纯化的几种同工酶进行X-射线衍射分析。
同工酶可以存在在同一细胞,同一组织,同一个体不同组织或者同一种属中[63-66]。
相对来讲,植物漆酶中的同工酶报道不多[47;67],我们首次报道了中国漆树漆酶的两种同工酶[11;12]。
各种同工酶的差异可能主要体现在糖链部分。
现在同工酶的研究已经成为细胞分化及形态遗传学的重要内容[68]。
2. 酶稳定技术和固定化
酶的稳定性,指的是在操作使用的时候,酶的催化能力不随着储存,使用频率,应用环境的改变而下降的能力,仍然是目前生物技术研究的一个关键问题。
酶作为一种生物物质,要完全不改变是不可能的,但是将损失尽量降低则是有可能的。
为了改善和提高漆树漆酶的催化能力,应该借鉴和参考其他的行之有效的手段,比如上面提到的酶表面活性剂改性,蛋白质工程技术,化学改性(比如交联,共价吸附,表面修饰等)[69;70],添加外源物质等[54;71]。
酶的固定化实际上只是酶和蛋白稳定化的一种技术,也是对酶进行改性的一种常规手段。
由于其本身的问题和对环境敏感的特点,并由于固定化漆酶在多方面的应用,使得酶固定化的研究得到了深入的发展[72]。
将漆酶固定在电极上是很好的方法,这种方法对于微量的无溶剂检测尤其适用[73-76]。
将漆酶和葡萄糖脱氢酶固定在一个Clark氧电极上,构造出一种酶传感器,可以在不到1min 之内同步区分可待因和吗啡[77],以及可以检测肾上腺素类物质[78;79]。
将漆酶固定在可以再生利用的铜螯合载体上,可用于去除酒类生产中的酚[80]。
漆酶固定在尼龙海绵体上,可以对聚合染料聚R-478脱色90%[81]。
固定化的方法很多,表4对漆酶的固定化研究作了枚举。
由于大多数酶都是水溶性的,不溶或者难溶于有机溶剂,所以对酶进行化学物理改性是最常见的手段,固定化技术实质上也是一种改性方法。
但是这些手段往往是以牺牲酶活为代价的,近年来发展的一种非离子型表面活性剂双十二烷基N-D-葡糖酸-L-谷氨酸酯(DHAD)改性酶
的方法,如图2所示,逐渐得到大家的重视。
这可能涉及对蛋白质分子表面的改性或者修饰。
这种非离子表面活性剂最早由Okahata等人[82]报道,稍后Goto等报道了一种改进的方法[83],我们改进后,首次用绿色方法合成的率高达96%以上的DHAD[84]。
由于这种非离子表面活性剂同时带有亲水和亲油基团,同时由于操作简单,对酶活的影响小,的率高等优点,近来颇受关注[85-93]。
图2 非离子型表面活性剂双十二烷基N-D-葡糖酸-L-谷氨酸酯(DHAD)改性酶方法
Table 2. Immobilization of fungal and Rhus laccases
comment carrier
sp. nylon-66
Cerrena unicolor Phenols Glass
beads Free and
immobilized
laccases Compared
Covalent-APTES-glutaraldehyde [94]
Syringaldazine
phenols
CPG-activated/covered,
dextran layer
Stability, K m, V max Covalent-APTES-
glutaraldehyde [69]
Coriolas hirsutus ABTS, Dye, Affi-Gel-15(agarose) 85% activity after
10 cycles
Covalent ester crossing-linking [95]
Lentinula edodes Effluent,
Phenols
Chitosan 520U/g,
storage
time, pH temp.
improved
Adsorption and subsequent with
glutaraldehyde cross-linking
[96]
ABTS,
Effluent,
Phenols
Eupergit 45%immobilized,
60% activity, temp.
Covalently-activated oxirane [97]
Pleurolus ostreatus ABTS, DMP,
Phenols,
Eupergit DMP
Continuous
elimination,
pH, temp., stability
improved
Covalently-activated oxirane [98]
Polyporus versicolor Phenols(apple
juice)
Sepharose
4H-Epi-IDA-Cu2+
39% phenols
removed
48% flavanols
removed
Adsorption [99]
Pyriculuria uryzae Phenols Microperl,
polyclar 95%
immobilized,
co-immobilized
Co-immobilization
(laccase/tyrosinase)
[100]
Phenols Polyethersulphone
membrane
40% immobilized,
kinetics reactor,
stability
Adsorption [101]
Phenols,
DMP, PDA
Natural and modified
chitosan, transitional
metals
30~70 immobilized,
properties improved
Adsoption, glutaraldehyde
cross-liking and/or chelation
[72]
Protein
coupling
p-benzoquinone-activated
agarose
27% immobilized,
150% activity
Affinity p-benzoquinone-activated
agarose
[102]
Phenols Transition metals,
hydroxide oxides
silica-ZrCl4
75% activity,
properties
Chelation or metal binding [103]
Rhus
vernicifera
Phenols Porous silica treated by 75% activity after Chelation or metal binding [104]
times,
20
ZrCl4 used
properties(pH, K m,
opt. Temp. etc.)
Phenols Urushiol resin-metal ions 10% activity,
[105]
properties
activity,
Adsorption electrostatic interaction [73]
electrodes 10%
ABTS Gold
mediator Fe(CN)63-
3. 漆酶的应用
漆酶的应用范围也是相当的广泛。
如上所述,也可以添加一些中介物质促进反应。
不过
对漆酶的各种应用,归结到一点,就是利用了它的催化氧化性能,漆酶结构和催化机理探讨
见文献[1],此文不再详述。
本文涉及其应用的几个主要方面和一些最新进展。
3.1 生物整治[106]
目前用于生物整治或生物修复的主要是真菌类酶,尤其是白腐真菌所产漆酶的高水平
而广受关注。
3.1.1 对烯烃的作用
用白腐真菌Trametes hirsuta产的漆酶氧化烯烃,分两部进行:酶先催化氧化一级底物,
加到反应中的中介物,然后被氧化的中介物再氧化二级底物——烯烃,使其成为相应的醛或
酮。
用羟基苯并三唑作中介物所得结果最好,脂肪多聚不饱和的和芳香烯丙基醇在20℃下
处理2h则可完全得到氧化。
在45℃下进行20h,脂肪烯丙基乙醇的氧化率可达70%。
对其
它烯烃,比如烯丙基乙醚,cis-2-庚烯和环辛烯的氧化率也有一定的催化效果[107]。
3.1.2 对TCP和其它有害物质的作用
用白腐真菌Panus tigrinus和Coriolus versicolor的液体培养基对2,4,6-三氯苯酚(TCP)
异构体的毒性作了研究。
在这两种情况下,无论是原封不动的真菌培养液还是纯化了的木质
素降解酶,Mn-过氧化酶和漆酶,两种真菌的木质素降解酶体系都能够将三氯苯酚转化成2,6-
二氯-1,4-氢醌和2,6-二氯-1,4-苯醌,只不过,在P.tigrinus培养液中对2,4,6-TCP起主要作用
的是Mn过氧化酶,而在C.versicolor中,则主要是漆酶[108]。
漆酶还可以降解一种内分泌混
乱化合物双酚A[90;109-112]。
在有中介物质,比如1-羟基苯并三唑(HBT)和ABTS作自由基中介物时能够氧化咔唑,
N-乙基咔唑,芴和硫芴[113;114]。
在有HBT协助时,从双酚和分酚化合物中可以剔除一种雌
激素活性物质,4-异丙基苯酚[115]。
在pH为3,在有2mmol/L的ABTS作氧化还原中介物,
纯化漆酶能够将一种除草剂Isoxaflutole在土壤和植物中的活化形式——二酮腈转化成酸类
物质[116]。
3.1.3 对废水和染料的处理及其生态效应
漆酶还能够对工业废水进行处理,对多种工业染料进行脱色,对自然界的木块进行降
解等等[117-123]。
近来,漆酶也被用于多环芳烃、石油烃污染物的生物处理,值得关注。
Criquet等人[124]报道,漆酶在一些落叶,如栎树叶中可以非常稳定的存在,他们认为这
可能是由于落叶吸收了腐殖酸的缘故。
由此或许可以猜测漆酶在落叶的降解中具有重要的生
态功能。
总之,漆酶在生物整治中的潜力很大,还没有得到很好的体现[125]。
3.2. 对木质素的作用
对于漆酶在木质化过程中的功能有多种论述[47;54;126;127],既涉及木质素的生物合成,也牵涉木质素的生物降解[128;129],或者说植物漆酶合成木质素,真菌漆酶降解木质素[130]。
尽管Cullen和Kersten认为漆酶对于木质素的生物降解并非绝对必要,但是也承认漆酶能够将木质素的酚单元氧化成苯氧基[131]。
Freudenberg等[131-133]很早就研究了芥子醇在漆酶等作用下的脱氢聚合反应。
有报道认为漆树漆酶不能催化愈创木酚和松柏醇,所以并不涉及到木质素的生物合成[134;135],但是很多植物(表1),如悬铃木[45;136]、连翘[53;54]、火炬松[46]及针叶树[137;138]等所产漆酶均发现同木质素的合成有关,能够催化松柏醇。
我们的研究也发现,漆树漆酶能够以非常慢的速度催化松柏醇[139]。
尤其是当有2, 2’-连氮-二(3-乙基苯并噻唑-6-磺酸)(ABTS)调节的时候,漆酶在催化愈创木酚和β-O-4-二聚醇时得到分子量更大的产物[140]。
而事实上,从1993年漆酶被用于去除纸浆木质素开始[141],这方面的研究已经相当的多。
特别是白腐真菌等真菌漆酶对木质素的降解[142-144]。
虽然对于漆酶在木质化过程中的功能和作用尚缺乏结论性的证据,但是由于涉及到木质素这种复杂的成份,涉及到生物资源的深度开发,利用和环境保护等重大课题,因此研究相当活跃,意义重大,将是今后的研究热点和重点。
漆酶还被用于毛发染色等具有现实意义的应用。
已经有专利报道了在有中介物质羟基氐存在时将漆酶用于染发剂[145;146]。
总之,从目前的研究报道来说,漆酶的确是一种多才多艺的酶,还有许多功能和应用有待发现与发展。
参考文献
(1) Wan Y-Y, Du Y-M. Structure and catalytic mechnism of laccases. Chemistry 2007; 70(9):662-670.
(2) Benfield G, Bocks SM, Bromley K, Brown BR. Studies of fungal and plant laccases. Phytochemistry 1964; 3:79-88.
(3) Bertrand G. Inhibitory Action of certain Acids on Laccase. Bulletin de la Societe de Chimie 1908; 4(1-2):1120-1131.
(4) Jiang L-J. Natural lacquer (Raw lacquer). In: Branch Institute of Chemical Engineering Design of North China DoCI, editor. Experiences of manufacturing techniques in paint and coating industry. Bei Jing: Chemical Industry Press, 1960: 29-43.
(5) Preface: Future and past of oriental lacquer in chemistry and technology. 30 May; Fuzhou, China: 1993.
(6) Reinhammar B. Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochimica et Biophysica Acta 1970; 205:35-47.
(7) Reinhammar B, Oda Y. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. Journal of Inorganic Biochemistry 1979; 11:115-127.
(8) Du Y-M, Kong Z-W, Li H-P. Studies on separation and structure of lacquer polysaccharide. Acta Polymerica Sinica 1994;(3):301-306.
(9) Du YM, Oshima R, Iwatsuki H, Kumanotani J. High-resolution gas-liquid chromatographic analysis of urushiol of the lac tree, Rhus vernicifera, without derivatization. Journal of Chromatography 1984; 295:179-186. (10) Du YM, Oshima R, Kumanotani J. Reversed-phase liquid chromatographic separation and identification of constituents of urushiol in the sap of the lac tree, Rhus vernicifera. Journal of Chromatography 1984; 284:463-473.
(11) Wan Y-Y, Du Y-M, Yang J-H, Chen R-Z, Xiao L, Zhang Y. Study on Purification and Characterization of Two Isoforms of Chinese Rhus Laccases from Rhus vernicifera. Journal of Wuhan University (Natural Science Edition) 2003; 49(2):201-204.
(12) Wan Y-Y, Du Y-M, Yang F-X, Xu Y, Chen R-Z, Kennedy JF. Purification and characterization of hydrosoluble components from the sap of Chinese lacquer tree Rhus vernicifera. International Journal of Biological Macromolecules 2006; 38(3-5):232-240.
(13) Kumanotani J. Enzyme catalyzed durable and authentic oriental lacquer: a natural microgelprintable coating by polysaccharide - glycoprotein - phenolic lipid complexes. Progress in Organic Coatings 1998; 34:309-315.
(14) Oshima R, Yamauchi Y, Watanabe C, Kumanotani J. Enzymic oxidative coupling of urushiol in sap of the
lac tree. Journal of the Organic Chemistry 1985; 50(15):2613-2621.
(15) Gan JH. Lacquer Chemistry. 1st ed. Beijing: Science Publisher, 1984.
(16) Morpurgo L, Calabrese L, Desideri A, Rotilio G. Dependence on freezing of the geometry and redox potential of Type 1 and Type 2 copper sites of Japanese-lacquer-tree (Rhus vernicifera) laccase. Biochemical Journal 1981; 193(2):639-642.
(17) Morpurgo L, Agostinelli E, Senepa M, Desideri A. A room temperature electron paramagnetic resonance study of native and fluoride-reacted Vietnamese and Japanese lacquer-tree laccases: differences from liquid-nitrogen spectra. Journal of Inorganic Biochemistry 1985; 24(1):1-8.
(18) Lee SK, George SD, Antholine WE, Hedman B, Hodgson KO, Solomon EI. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. Journal of the American Chemical Society 2002; 124(21):6180-6193.
(19) Sundaram UM, Zhang HH, Hedman B, Hodgson KO, Solomon EI. Spectroscopic Investigation of Peroxide Binding to the Trinuclear Copper Cluster Site in Laccase: Correlation with the Peroxy-Level Intermediate and Relevance to Catalysis. Journal of the America Chemical Society 1997; 119(51):12525-12540.
(20) Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chemical Reviews 1996; 96(7):2563-2605.
(21) Yoon J, Solomon EI. Electronic structures of exchange coupled trigonal trimeric Cu(II) complexes: Spin frustration, antisymmetric exchange, pseudo-A terms, and their relation to O2 activation in the multicopper oxidases. Coordination Chemistry Reviews 2006; In Press.
(22) Cole JL, Ballou DP, Solomon EI. Spectroscopic characterization of the peroxide intermediate in the reduction of dioxygen catalyzed by the multicopper oxidases. Journal of the America Chemical Society 1991; 113(22):8544-8546.
(23) Shin W, Sundaram UM, Cole JL, Zhang HH, Hedman B, Hodgson KO, Solomon EI. Chemical and Spectroscopic Definition of the Peroxide-Level Intermediate in the Multicopper Oxidases: Relevance to the Catalytic Mechanism of Dioxygen Reduction to Water. Journal of the America Chemical Society 1996; 118(13):3202-3215.
(24) Quintanar L, Yoon J, Aznar CP, Palmer AE, Andersson KK, Britt RD, Solomon EI. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. Journal of the American Chemical Society 2005; 127(40):13832-13845.
(25) Wan Y-Y, Lu R, Du Y-M, Honda T, Miyakoshi T. Does Donglan lacquer tree belong to Rhus vernicifera species? International Journal of Biological Macromolecules 2007; 41(5):497-503.
(26) Bonomo RP, Boudet AW, Cozzolino R, Rizzarelli E, Santoro AM, Sterjiades R, Zappala R. A comparative study of two isoforms of laccase secreted by the "white-rot" fungus Rigidoporus lignosus, exhibiting significant structural and functional differencese. Journal of Inorganic Biochemistry 1998; 71(3-4):205-211.
(27) Robles A, Lucas R, Martinez-Canamero M, Ben Omar N, Perez R, Galvez A. Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32. Enzyme and Microbial Technology 2002; 31(4):516-522.
(28) Jung H, Xu F, Li K. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme and Microbial Technology 2002; 30(2):161-168.
(29) Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology and Biochemistry 2000; 32(7):919-927.
(30) Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiology Reviews 2005; 30(2):215-242.
(31) Claus H, Filip Z. The evidence of a laccase -like enzyme activity in a Bacillus sphaericus strain. Microbiological Research 1997; 152(2):209-216.
(32) Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiology Letters 1993; 108(2):205-210.
(33) Solano F, Garcia E, De Egea EP, Sanchez-Amat A. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Applied and Environmental Microbiology 1997; 63(9):3499-3506.
(34) Alexandre G, Zhulin IB. Laccases are widespread in bacteria. Trends in Biotechnology 2000; 18(2):41-42.
(35) Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal structure of a bacterial endospore coat component--a laccase with enhanced thermostability properties. The Journal of Biological Chemistry 2003; 278(21):19416-19425.
(36) Hopkins TL, Kramer KJ. Insect cuticle sclerotization. Annual Review of Entomology 1992; 37:273-302.
(37) Kramer KJ, kanost MR, Hopkins TL, Jiang H, Zhu Y-C, Xu R, Kerwin JL, Turecek F. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 2001; 57(2):385-392.
(38) Sidjanski S, Mathews GV, Vanderberg JP. Electrophoretic separation and identification of phenoloxidases in hemolymph and midgut of adult Anopheles stephensi mosquitoes. Journal of Parasitology 1997; 83(4):686-691.
(39) Gan JH. lacquer chemistry. 1st ed. Beijing: Science Publisher, 1984.
(40) Lim KT, Hu C, Kitts DD. Antioxidant activity of a Rhus verniciflua Stokes ethanol extract. Food and Chemical Toxicology 2001; 39(3):229-237.
(41) Joel DM, Marbach I, Mayer AM. Laccase in anacardiaceae. Phytochemistry 1978; 17(4):796-797.
(42) Griffiths LA. Detection and identification of the polyphenoloxidase substrate of the banana. Nature 1959; 184:58-59.
(43) Mayer AM, Harel E. Polyphenol oxidases in plants. Phytochemistry 1979; 18(2):193-215.
(44) Chen Y-A, Shin J-W, Liu Z-H. Effect of light on peroxidase and lignin synthesis in mungbean hypocotyls. Plant Physiology and Biochemistry 2002; 40(1):33-39.
(45) Bligny R, Douce R. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme. Biochemical Journal 1983; 209(2):489-496.
(46) Bao W-L, O'Malley DM, Whetten R, Sederoff RR. A laccase associated with lignification in loblolly pine xylem. Science 1993; 260(5108):672-674.
(47) Ranocha P, McDangau G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-MacHeteau M, Boudet A-M, Goffner D. Biochemical characterization, molecular cloning and expression of laccases - a divergent gene family - in poplar. European Journal of Biochemistry 1999; 259(1-2):485-495.
(48) Nitta K, kataoka K, Sakurai T. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. Journal of Inorganic Biochemistry 2002; 91:125-131.
(49) Gregory RPF, Bendall DS. The purification and some properties of the polyphenol oxidase from tea (Camellia sinensis). Biochemical Journal 1966; 101(3):569-581.
(50) De Marco A, Roubelakis-Angelakis KA. Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts. Phytochemistry 1997; 46(3):421-425.
(51) Richardson A, Duncan J, McDougall GJ. Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiology 2000; 20(15):1039-1047.
(52) Pare PW, Wang H-B, Davin LB, Lewis NB. (+)-Pinoresinol synthase: a stereoselective oxidase catalyzing 8,8'-lignan formation in Forsythia intermedia. Tetrahedron Letters 1994; 35(27):4731-4734.
(53) Davin LB, Bedgar DL, Katayama T, Lewis NG. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 1992; 31(11):3869-3874.
(54) Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DG, Sarkanen S, Lewis NG. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 1997; 275:362-366.
(55) Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L. 'Yellow' laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters 1997; 413(3):446-448.
(56) Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiology Letters 1997; 156(1):9-14.
(57) Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. Journal of Biological Chemistry 1997; 272(50):31301-31307.
(58) Chefetz B, Chen Y, Hadar Y. Purification and characterization of laccase from Chaetomium thermophilum and its role in humification. Applied and Environmental Microbiology 1998; 64(9):3175-3179. (59) Chefetz B, Kerem Z, Chen Y, Hadar Y. Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste. Soil Biology and Biochemistry 1998; 30(8-9):1091-1098.
(60) Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI. Production of lignin modifying enzymes by co-cultivated White-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme and Microbial Technology 2002; 30(4):573-580.
(61) Tagger S, Perissol C, Gil G, Vogt G, Le Petit J. Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme and Microbial Technology 1998; 23(6):372-379.
(62) Antorini M, Herpoel-Gimbert I, Choinowski T, Sigoillot JC, Asther M, Winterhalter K, Piontek K. Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology 2002; 1594(1):109-114.
(63) Viterbo A, Staples RC, Yagen B, Mayer AM. Selective mode of action of cucurbitacin in the inhibition of laccase formation in Botrytis cinerea. Phytochemistry 1994; 35(5):1137-1142.
(64) Scherer M, Fischer R. Purification and characterization of laccase II of Aspergillus nidulans. Archives of Microbiology 1998; 170(2):78-84.
(65) Scherer M, Fischer R. Molecular characterization of a blue-copper laccase, TILA, of Aspergillus nidulans. FEMS Microbiology Letters 2001; 199(2):207-213.
(66) Pezet R. Purification and characterization of a 32-kDa laccase -like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiology Letters 1998; 167(2):203-208.
(67) Cheng F-G, Chen Y. Separation and Identification of Isoenzyme in Raw Urushi by Isoelectrofocusing. Journal of South-Central University for Nationalities (Natural Sciences) 2001; 20(1):78-82.
(68) Shen T, Wang JY. Biochemistry. 2nd ed. Bei Jing: High Education Press of China, 1990.
(69) Rogalski J, Dawidowicz A, Jozwik E, Leonowicz A. Immobilization of laccase from Cerrena unicolor on controlled porosity glass. Journal of Molecular Catalysis B: Enzymatic 1999; 6(1-2):29-39.
(70) Ruiz AI, Malave AJ, Felby C, Griebenow K. Improved activity and stability of an immobilized recombinant laccase in organic solvents. Biotechnology Letters 2000; 22(3):229-233.
(71) O'Fagain C. Enzyme stabilization--recent experimental progress. Enzyme and Microbial Technology 2003; 33:137-149.
(72) Wan Y-Y, Du Y-M, Shi X-W, Li J, Ru L, Miyakoshi T. Immobilization and Characterization of Rhus Laccase from Chinese Rhus vernicifera on Modified Chitosan. Process Biochemistry 2006; 41(6):1378-1382. (73) Hyung KH, Shin W. Characterization of immobilized laccase and its catalytic activities. Journal of the Korean Electrochemical Society 1999; 2(1):31-37.
(74) Leech D, Daigle F. Optimization of a reagentless laccase electrode for the detection of the inhibitor azide.
Analyst 1998; 123(10):1971-1974.
(75) Quan D, Shin W. Amperometric detection of hydroquinone and homogentisic acid with laccase immobilized platinum electrode. Bulletin of Korean Chemical Society 2004; 25(6):833-837.
(76) Quan D, Shin W. Amperometric detection of catechol and catecholamines by immobilized laccase from DeniLite. Electroanalysis 2004; 16(9):1576-1582.
(77) Bauer CG, Kuhn A, Gajovic N, Skorobogatko O, Holt P-J, Bruce NC, Makower A, Lowe CR, Scheller FW. New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase. Fresenius' Journal of Analytical Chemistry 1999; 364(1-2):179-183.
(78) Ghindilis AL, Michael N, Makower A. A new sensitive and simple method for detection of catecholamines from adrenal chromaffin cells. Pharmazie 1995; 50(9):599-600.
(79) Ghindilis AL, Makower A, Scheller FW. A laccase-glucose dehydrogenase recycling-enzyme electrode based on potentiometric mediatorless electrocatalytic detection. Analytical Methods & Instrumentation 1995; 2(3):129-132.
(80) Servili M, De Stefano G, Piacquadio P, Sciancalepore V. A novel method for removing phenols from grape must. American Journal of Enology and Viticulture 2000; 51(4):357-361.
(81) Maceiras R, Rodriguez-Couto S, Sanroman A. Influence of several activators on the extracellular laccase activity and in vivo decolorization of poly R-478 by semi-solid-state cultures of Trametes versicolor. Acta Biotechnologica 2001; 21(3):255-264.
(82) Okahata Y, Lim H-J, Hachiya S, Nakamura G.-I. Bilayer-coated capsule membrances.IV. Control of NaCl permeability by phase transition of synthetic bilayer coatings, depending on their hydrophilic head groups. Journal of Membrane Science 1984; 19(3):237-247.
(83) Goto M, Matsumoto M, Kondo K, Nakashio F. Development of new surfactant for liquid surfactant membrane process. Journal of Chemical Engineering of Japan 1987; 20(2):157-164.
(84) Wan Y-Y, Du Y-M, Hu K, Wang L-S, Cheng G-Z, Yang J-H, Kennedy JF. Synthesis and characterization of a kind of nonionic surfactant didodecyl 2-(2,3,4,5,6-pentahydroxy-hexanamido) pentanedioate: A green chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007; 296(1-3):270-276.
(85) Song B-D, Wu J-C, Xing A-H, Zhang MQ, Wang S-C. Surfactant-coated enzymes used as catalysts for reactions in organic solvents. Chemical Engineering (China) 2002; 30(2):45-48.
(86) Okazaki S-Y, Goto M, Wariishi H, Tanaka H, Furusaki S. Characterization and catalytic property of surfactant-laccase complex in organic media. Biotechnology Progress 2000; 16(4):583-588.
(87) Okahata Y, Fujimoto Y, Ijiro K. Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents. Tetrahedron Letters 1988; 29(40):5133-5134.
(88) Okahata Y, ijiro K. A lipid-coated lipase as a new catalyst for triglyceride synthesis in organic solvents. Journal of the Chemical Society: Chemical Communication 1988; 20:1392-1394.
(89) Okahata Y, Ijiro K. Preparation of a lipid-coated lipase and catalysis of glyceride ester syntheses in homogeneous organic solvents. Bulletin of the Chemical Society of Japan 1992; 65:2411-2420.
(90) Michizoe J, Ichinose S, Kamiya N, Maruyama T, Goto M. Biodegradation of Phenolic Environmental Pollutants by a Surfactant朙accase Complex in Organic Media. Journal of Bioscience and Bioengineering 2005; 99(6):642-647.
(91) Goto M, Kamiya N, Miyata M, Nakashio F. Enzymatic esterification by surfactant-coated lipase in organic media. Biotechnology Progress 1994; 10:263-268.
(92) Xing A-H, Song B-D, Wu J-C, Wang S-C. Preparation and applications of surfactant-coated enzymes. Chemical Industry and Engineering 2002; 19(1):36-42.
(93) Wu HY, Xu JH, Tsang SF. Efficient resolution of a chiral alcohol (RS)-HMPC by enzymatic transesterification with vinyl acetate using surfactant-modified lipase. Enzyme and Microbial Technology 2004; 34(5):523-528.
(94) Luterek J, Gianfreda L, Wojtas-Wasilewska M, Rogalski J, Jaszek M, Malarczyk E, Dawidowicz A, Finksboots M, Ginalska G, Leonowicz A. Screening of the wood-rotting fungi for laccase production: induction by ferulic acid, partial purification, and immobilization of laccase from the high laccase-producing strain, C errena unicolor. Acta Microbiologica Polonica 1997; 46(3):297-311.
(95) Reyes P, Pickard MA, Vazquez-Duhalt R. Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnology Letters 1999; 20(10):875-880.
(96) D'Annibale A, Stazi SR, Vinciguerra V, Mattia ED, Sermanni GG. Characterization of immobilized laccase from L entinula edodes a nd its use in olive-mill wastewater treatment. Process Biochemistry 1999; 34:697-706. (97) D'Annibale A, Stazi SR, Vinciguerra V, Giovannozzi Sermanni G. Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of Biotechnology 2000; 77(2-3):265-273.
(98) Hublik G, Schinner F. Characterization and immobilization of the laccase from P leurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme and Microbial Technology 2000; 27(3-5):330-336.
(99) Piacquadio P, De Stefano G, Sammartino M, Sciancalepore V. Phenols removal from apple juice by laccase immobilized on Cu2+-chelate regenerable carrier. Biotechnology Techniques 1997; 11(7):515-517. (100) Krastanov A. Removal of phenols from mixtures by co-immobilized laccase/tyrosinase and polyclar adsorption. Journal of Industrial Microbiology & Biotechnology" 2000; 24(6):383-388.
(101) Lante A, Crapisi A, Krastanov A, Spettoli P. Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochemistry 2000; 36(1-2):51-58.
(102) Mateescu M-A, Agostinelli E, Weltrowska G, Weltrowski M, Mondovi B. Specific immobilization of。