0鲁教版数学(五四制)八年级上册全册课件【完整版】
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)3x2-3x=__3_x_(_x_-1_)__
(2)m(ɑ+b-1)=_m__ɑ_+_m__b_-_m_ (2)mɑ+mb-m=___m__(_ɑ_+_b_-_1_)
(3)(m+4)(m-4)= _m__2_-1_6__ (3)m2-16=__(m__+_4_)_(m__-_4_) _
(4)(y-3)2= __y_2_-6_y_+_9__
(课余探索)
谢谢
提公因式法
第二课时
回顾思考
提公因式法因式分解: 1.公因式的系数是多项式各项_系__数__的__最__大__公__约__数__; 2.字母取多项式各项中都含有的_相__同__的__字__母___; 3.相同字母的指数取各项中最小的一个,即最__低__次__幂___。
鲁教版(HS)八年级数学上册(五四制)
内含大量动画全真演绎教学内容 打造中学数学高效课堂的首选教学课件
可修改,可直接使用
教育部审定版本,百度文库首发
因式分解
993-99能被100整除吗?
小明是这样想的: 993-99=99×992-99 ×1
=99×(992-1) =99×9800 =99×100×98 所以,993-99能被100整除。
(4)y2-6y+9=__(_y_-_3_)2__
思考:因式分解与整式乘法有什么关系?
左边式子的变形为整式乘法,右边式子的变形 为因式分解,两种变形互为逆运算变形过程。
基础闯关1
判断下列各式哪些是整式乘法?哪些是因式分解?
(1)x2-4y2=(x+2y)(x-2y) (2)2x(x-3y)=2x2-6xy (3)(5ɑ-1)2=25ɑ2-10ɑ+1
探究思考
你是怎么想的? 与同伴交流。
在这里,解决问题的关键是把一个数式化成了
几个数的积的形式。你能尝试把ɑ2-ɑ化成几个整 式的乘积的形式吗?与同伴交流(提示:把ɑ看成
一个数)
观察下面拼图过程,写出相应的关系式。
做一做
ɑm+bm+cm
m(ɑ+b+c)
x2+x+x+1
(x+1)2
归纳总结
ɑm+bm+cm=m(ɑ+b+c)
议一议
(1)多项式2x2+6x3中各项的公因式是什么? (2)你能尝试将多项式2x2+6x3因式分解吗? 与同伴进行交流。
多项式2x2+6x3中各项的公因式是2x2 将公因式提出:2x2+6x3=2x2(1+3x)
结论
(1)各项系数是整数,系数的最大公约数是公因式 的系数; (2)各项都含有的字母的最低次幂的积是公因式的 字母部分; (3)公因式的系数与公因式字母部分的积是这个多 项式的公因式。
因式分解要注意以下几点: 1.分解的对象必须是多项式。 2.分解的结果一定是几个整式的乘积的形式。
谢谢
提公因式法
第一课时
温故知新
一、因式分解的概念 把一个多项式化为几个整式的积的形式,
这种变形叫做把这个多项式分解因式。
二、整式乘法与分解因式之间的关系
互为逆运算
三、计算 5 15 - 5 9 5 2
方法应用
2 x2 +6 x 3 的公因式。
2
定系数
x
2 定指数
定字母
新知学习
如果一个多项式的各项含有公因式,那 么就可以把这个公因式提出来,从而将多项 式化成两个因式乘积的形式,这种分解因式 的方法叫做提公因式法。
例题演示
例1:把下列各式因式分解:
(1)3x+x3
解:3x+x3 =x(3+x2)
课堂小结
关键
提公因式法分解因式 正确的找出多项式各项的公因式
1.多项式是几项,提公因式后也剩几项。 2.当多项式的某一项和公因式相同时提公因式 后剩余的项是1。
作业
1.习题1.2:第1、2题。
小小数学家
已知x3+x2+x+1=0,求1+x+x2+x3+…+x2006的 值。聪明的同学,你能得到这个计算结果吗?
8 88
解: 原式 5 15-9 2
8
58 8
5
这个式子的 各项有相同 的因数吗?
如图:两个长和宽分别为a和m,b和m 的长方形,合并成一个较大的长方形,求 这个新长方形的面积?
ma+ma=m(a+b)
认真观察等式两边各有什么特点?
概念展示
ma+mb=m(a+b)
相同因式
我们把多项式各项都含有的相同因式,叫做 这个多项式的公因式。如ab+bc的公因式是b。
x2+x+x+1= x2+2x+1 =(x+1)2
像上面两个式子那样,把一个多项式 化成几个整式的积的形式,这种变形叫做 因式分解。例如ɑm+bm+cm=m(ɑ+b+c), x2+2x+1 =(x+1)2 都是因式分解。因式分 解也可称为分解因式。
做一做
计算下列各式:
根据左面的算式填空:
(1)3x(x-1)= _3_x_2_-_3_x_
因式分解 整式乘法 整式乘法
(4)x2+4x+4=(x+2)2
因式分解
(5)(ɑ-3)(ɑLeabharlann Baidu3)=ɑ2-9
整式乘法
(6)m2-4=(m+2)(m-2)
因式分解
基础闯关2
下列各式从左到右的变形,是否为分解因式?
(1)a(a 2b) a2 2ab 否
(2)bx bx2 bx(1 x)
是
(3)a2 4 (a 2)(a 2) 是
(2)7x3-21x2
解:7x3-21x2 =7x2(x-3)
(3)8a3b2-12ab3c+ab
解:8a3b2-12ab3c+ab =ab(8a2b-12b2c+1)
注意:当多项 式的某一项和公因 式相同时,提公因 式后剩余的项是1。
想一想
提公因式法分解因式与单项式乘多项式 有什么关系?
提公因式法与单项式乘多项是互为逆 运算关系。
(4)x2 2x 1 x(x 2) 1 否
(5)24a2bc 23 a2 3bc 否
课堂小结
1.对多项式分解因式与整式乘法是方向相反的两 种恒等变形; 2.整式的乘法运算是把几个整式的积变为多项式 的形式,特征是向着积化和差的形式发展; 3.多项式的分解因式是把一个多项式化为几个整 式乘积的形式,特征是向着和差化积的形式发展。
如何确定多项式各项的公因式?
随堂练习
把下列各式因式分解:
(1)ma+mb
(5)4m3-6m2
(2)5y2+20y2
(6)a2b-5ab+9b
(3)6x-9xy (4)a2b-5ab
(7)3a2y-3ay+6ay2 (8)10a2x-15a2y+5a2
课堂小结
1.什么叫因式分解? 2.确定公因式的方法: (1)定系数 (2)定字母 (3)定指数 3.提公因式法分解因式: 第一步,找出公因式; 第二步,提公因式。 (把多项式化为两个因式的乘积)