食品中丙烯酰胺的危害暴露评估及检测方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号
食品毒理学(综述)
题目:食品中丙烯酰胺的危害、暴露
评估及检测方法
食品学院营养与卫生学专业
班级食硕1005
学号
学生姓名张锦
二〇一一年二月
食品中丙烯酰胺的危害、暴露评估及检测方法
摘要:丙烯酰胺(acrylamide,AA)是日常生活中常见的一种化合物,也是公共卫生、食品安全研究的热点毒性物质,近几年来对丙烯酰胺神经毒性、遗传毒性、生殖毒性等的研究方兴未艾。本文着重介绍丙烯酰胺的理化特性、代谢途径、遗传生殖毒性、生殖毒性等方面的状况,并简要介绍了其危害评估及检测方法。
关键词:丙烯酰胺;遗传毒性;生殖毒性;神经毒性
0 引言
丙烯酰胺(CH2=CH-CONH2,AA)是一种白色晶体物质,分子量为70.08,密度为11229/L,熔点为85℃,沸点为125℃,室温下稳定,可溶于水、乙醇、乙醚、丙酮和三氯甲烷,不溶于苯、庚烷等非极性溶剂。在酸中稳定性强,在碱中容易分解,对光线敏感。可生物降解,不会在环境中积累。丙烯酰胺是1950年以来广泛用于生产化工产品聚丙烯酰胺的前体物质。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等[1]。在欧盟,丙烯酰胺年产量约为8-10万吨。2002年4月瑞典国家食品管理局和瑞典斯德哥尔摩大学的科学家经研究首次发现,在某些高温油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片、谷物、面包等中发现含量很高的丙烯酰胺,其含量比世界卫生组织(WHO)规定的饮水中丙烯酰胺的含量(<1μg/d)高出500倍以上[2,3]。之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。
1 丙烯酰胺的代谢
丙烯酰胺可通过多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳,并且能透过血胎屏障[4]。经口给予大鼠0.1 mg/kg bw 的丙烯酰胺,其绝对生物利用率为23-48%。丙烯酰胺在人体和试验动物体内的主要代谢途径是相似的。进入人体内的丙烯酰胺约90%被代谢,仅少量以原型经尿液排出。另外一个主要途径是与谷胱苷肽(GSH)结合,通过谷胱苷肽—S—转移酶(GST)催化,产生的代谢物(N-乙酰-S-半胱氨酸)通过尿液大量排出[5]。丙烯酰胺进入体内后,在细胞色素P4502E1的作用下,生成活性环氧丙酰胺(glycidamide)[6]。该环氧丙酰胺比丙烯酰胺更容易与DNA上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变;因此,被认为是丙烯酰胺的主要致癌活性代谢产物。研究报道,给予大小鼠丙烯酰胺后,在小鼠肝、肺、睾丸、白细胞、肾和大鼠肝、甲状腺、睾丸、乳腺、骨髓、白细胞和脑等组织中均检出了环氧丙酰胺鸟嘌呤加合物。目前,尚未见人体丙烯酰胺暴露后形成DNA加合物的报道。
此外丙烯酰胺和环氧丙酰胺还可与血红蛋白形成加合物,在给予动物丙烯酰胺和摄入含有丙烯酰胺食品的人群体内均检出血红蛋白加合物,因此可用该血红蛋白加合物作为接触性生物标志物来推测人群丙烯酰胺的暴露水平。
2丙烯酰胺的生殖毒性
Hasegawa[7]采用0.5~5 mg/L的AA溶液(与日常食物中的AA含量大致相当)喂养线虫(Caenorhabditis elegans),未发现其对线虫的生长发育及生殖功能有显着性影响。以500 mg/L的AA溶液喂养线虫,可延迟其生长,体重减轻,生殖器缩小;以0.5mg/L的AA溶液喂养可明显缩短线虫的寿命,但以5 mg/L的AA 溶液喂养线虫时并不引起寿命缩短,以500 mg/L的AA溶液喂养线虫时又可明显缩短寿命。
1978年,Shiraishi等对雄性小鼠进行AA经口染毒(0.05%)或腹腔注射(0、50、100、150 mg/kg)染毒,结果显示,经口染毒3周或腹腔注射染毒12 d后,小鼠睾丸重量与对照组相比明显降低,精原细胞和初级精母细胞中非整倍体和多倍体增加,染色体碎片生成,染色质交换或出现单倍体,并且这些改变均有剂量和时间依赖性。
在另一项关于AA对雄性大鼠生殖毒性效应的研究中,连续5 d分别给予雄性大鼠0、5、15、30、45和60 mg(kg/d)的AA溶液,结果显示,60mg/(kg/d)组大鼠体重下降,睾丸和附睾重量显着下降,附睾尾部的精子数量显着减少,并呈剂量依赖关系:生精小管有组织病理损伤.表现为小管内皮细胞的增厚和层数的增加以及多核大细胞的形成,表明AA对大鼠有生殖毒性[8]。
3丙烯酰胺的遗传毒性
丙烯酰胺在体内和体外试验均表现有致突变作用,可引起哺乳动物体细胞和
生殖细胞的基因突变和染色体异常,如微核形成、姐妹染色单体交换、多倍体、非整倍体和其他有丝分裂异常等,显性致死试验阳性。并证明丙烯酰胺的代谢产物环氧丙酰胺是其主要致突变活性物质。
Ghanayem等的研究结果表明,在细胞色素P4502E1的参与下,AA可氧化代谢为环氧丙烯酰胺(glycidamide,GA)。在AA引起的精子细胞突变中。细胞色素P4502EI起着关键作用。由于细胞色素P4502E1在人群中的多态性,导致AA的氧化代谢能力发生差异,因此,不同个体对AA毒性的敏感性也不同。
Jiang等[9]采用彗星实验和微核试验检测了AA在人肝细胞瘤G2(HepG2)细胞中的可能遗传毒性,结果显示,AA可引起DNA单链断裂,并且提高了HepG2细胞的微核率,具有一定的剂量-效应关系,提示AA对HepG2细胞具有遗传毒性,可能是由于细胞内氧自由基(ROS)引起DNA氧化损伤,导致GSH含量减少所致。
瑞典食品管理局的报道指出,AA诱导小鼠基因突变的最低剂量为25~
50mg/kg,此最低剂量的10~20倍可诱导小鼠的染色体发生异常[10]。
4丙烯酰胺的神经毒性
大量的动物试验研究表明丙烯酰胺主要引起神经毒性。神经毒性作用主要为周围神经退行性变化和脑中涉及学习、记忆和其他认知功能部位的退行性变;生殖毒性作用表现为雄性大鼠精子数目和活力下降及形态改变和生育能力下降。大鼠90天喂养试验,以神经系统形态改变为终点,最大未观察到有害作用的剂量(NOAEL)为0.2 mg/kg bw/天。
有研究认为,丙烯酰胺的中枢神经毒性可能与脑纹状体多巴胺能系统的功能紊乱有关。已知丙烯酰胺的神经毒性是通过减少突触的神经递质的释放来介导的,Lopachir 等[11]的实验观察到丙烯酰胺中毒的大鼠纹状体小泡神经递质摄取和释放都有障碍,提出小泡转运功能的抑制可能导致突触神经递质储存障碍,并影响神经递质的释放。早期的电生理研究也显示。丙烯酰胺抑制了中枢和周围神经系统突触的神经传递。
近期研究发现.丙烯酰胺能引起大鼠大脑皮质内一些神经元发生核皱缩、退变。且低剂量组退变的神经元有趋向于凋亡的趋势,可能处于凋亡的早期[12],其具体机制还有待于进一步的研究。
5丙烯酰胺的暴露评估
丙烯酰胺主要在高碳水化合物、低蛋白质的植物性食物加热(120 C 以上)烹调过程中形成。140-180℃为生成的最佳温度,而在食品加工前检测不到丙烯酰胺;在加工温度较低,如用水煮时,丙烯酰胺的水平相当低。水含量也是影响其形成的重要因素,特别是烘烤、油炸食品最后阶段水分减少、表面温度升高后,其丙烯酰胺形成量更高;但咖啡除外,在焙烤后期反而下降。丙烯酰胺的主要前