试点高校网络教育部分公共基础课全国统一考试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试点高校网络教育部分公共基础课全国统一考试

高等数学(B )试卷

2008年4月

注意:是非题、选择题、填空题及解答题的解答均必须写在答题纸上,写在试

卷上的任何解答一律无效.

一、是非题(满分18分)本大题共6个小题,每小题3分.对每小题给出的命

题,认为正确的在答题纸相应的空格内填“对”,否则填“错”.

1.函数22

11x

x y +-=的定义域为}0|{≠x x .( ) 2.极限5

15sin lim 0=→x x x .( ) 3.函数)(x f 在点0x x =处可导,则该函数在点0x x =处必连续.( )

4.函数)(x f 在其定义域上的极小值可能大于它的一个极大值.( )

5.设)(x f 为连续函数,则⎰+=C x f x x f )()'d )((.( )

6.设)(x f 为]2,2[-上连续奇函数,则0d )(22=⎰

-x x f .( )

二、选择题(满分20分)本大题共5个小题,每小题4分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母写在答题纸相应的空格内.

7.极限=+→)(lim 21x x x ( ). A .1-

B .0

C .1

D .2

8.函数x x f cos 3)(+=在),(∞+-∞内是( ).

A .偶函数

B .奇函数

C .无界函数

D .单调函数

9.设函数x y ln 5+=,则d y =( ).

A .x x d e B. x x d 1 C. x x )d e 1(+ D. x x d 11⎪⎭⎫ ⎝

⎛+ 10.不定积分⎰=x x de e ( ).

A .C x +2e

B .

C x +e C .C x +22e

D .C x +2e 2

1 11.设函数)(x f 在),(b a 内可导,且0)(<'x f ,则)(x f 在),(b a 内( ).

A . 单调增加

B . 单调减少

C . 是常数

D . 依条件不能确定单调性

三、填空题(满分20分)本大题共5个小题,每小题4分. 把答案写在答题纸

相应的空格内.

12.极限=⎪⎭

⎫ ⎝⎛+∞→x x x 21lim ( ). 13.设函数)(x f 在2=x 处可导,且1)2(='f ,则=∆-∆+→∆x

f x f x )2()2(lim 0( ). 14.设x 为)(x f 的一个原函数,则函数)(x f =( ).

15.设⎩⎨⎧=≠=1

,1,e )(x a x x f x ,若函数)(x f 在1=x 处连续,则常数=a ( ).

16.微分方程

y x

y =d d 的通解是( ).

四、解答题(满分42分)本大题共6个小题,每小题满分7分. 解答应写出推

理、演算步骤,将解答写在答题纸相应的位置上. 17.求极限2

31)1(23lim -+-→x x x x .

18.设函数x y sin 2-=,求x y d d 及 0

d d =x x y .

19.设函数x x y ln =,求(1)定义域;(2)''y ;(3)函数图形的凹区间.

20.计算不定积分x x d 1

31⎰-. 21.求由曲线x y e =及直线1=y 和1=x 所围成的平面图形的面积(如下图).

22.求微分方程

x x

y x y =+d d 的通解.

试点高校网络教育部分公共基础课全国统一考试

高等数学(B )试卷参考解答与评分标准

2008年4月

一、是非题(满分18分,每小题3分)

1. 错

2. 错

3. 对

4. 对

5. 错

6. 对

二、选择题(满分20分,每小题4分)

7. D 8. A 9. B 10. D 11. B

三、填空题(满分20分,每小题4分)

12.2e 13.1 14.1 15.e 16.x C y e =

四、解答题(满分42分,每小题满分7分)

17.解法一:

)1(233lim )1(23lim 212

31--=-+-→→x x x x x x x ··············································· 3分 26lim

1x x →= ····················································· 6分 3= ···························································· 7分

解法二: )1(233lim )1(23lim 212

31--=-+-→→x x x x x x x ················································ 3分 2

)1(3l i m )1(2)1)(1(3lim 11+=--+=→→x x x x x x ························ 6分 3= ····························································· 7分

18.解:

x x

y cos d d -= ······································································· 5分 1d d 0

-==x x y

·

······································································· 7分 19.解:

(1)),0(∞+,(写为0>x 也正确) ·········································· 2分

(2)1ln '+=x y ······································································ 4分

x

y 1"=············································································ 5分 (3)函数图形的凹区间为),0(∞+ ············································· 7分

20.解法一:

⎰⎰--=-13)13(d 3113d x x x x ·

·························································· 3分 C x +-=|13|ln 3

1 ······················································ 7分 解法二:

设13-=x u ···································································· 1分

相关文档
最新文档