名师推荐A题车灯线光源的最优设计4数学建模

名师推荐A题车灯线光源的最优设计4数学建模
名师推荐A题车灯线光源的最优设计4数学建模

A题车灯线光源的最优设计

参赛队员:王之元谷德峰饶彬

指导老师:毛紫阳

学校:湖南长沙国防科技大学

A题车灯线光源的最优设计

摘要

车灯线光源的设计具有很强的实际应用意义。该问题属于单目标规划中的非线性规划问题。本文通过已知条件求出了灯光焦点,以及任一条反射光线的空间解析表达式和对应屏上的坐标位置表达式。然后建立光子跟踪模型进行求解。光子跟踪模型的原理是把光线粒子化,及时跟踪光子的运行方向,最后以单位面积打到屏上的光子数来衡量光照度大小,进而反映光强度在屏上的分布规律。这是一种离散型处理方法,其本质是计算机模拟。这个模型中基于不同原理又提出了好几种算法:等间距光子跟踪算法,改进的等间距跟踪算法,等效立体角跟踪算法和随机方向跟踪算法。每一种算法的原理都不一样,层层递增,一步比一步深入,并分别作图进行比较。另外还结合边界条件讨论了线光源长度的临界值以及B、C两点光强随线光源长度变化的规律。在进一步讨论中,我们分析了光线直射到屏上时的情况,对二次反射的影响也做了分析,进而证明了问题的合理性。

本文我们得出的结论是:

满足功率最小时的灯丝长度为4.337mm,第二问的答案见下图,图的大概形状是一个心形。

关键词:光子跟踪模型计算机模拟

一、问题重述与分析:

1、问题重述

车灯线光源的设计是一个非常实际的问题。已知车灯的形状为一旋转抛物面,其开口半径36毫米,深度21.6毫米。经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源。要求在某一设计规范标准下确定使光源功率最小的线光源长度(规范化要求略,见原题);并对得到的线光源长度,在有标尺的坐标系中画出测试屏上反射光的亮区和讨论该设计规范的合理性。

2、问题分析

显然在线光源单位长度光通量一定的情况时,要使光源功率最小,线光源的长度也应该较小。但线光源的长度太小了,有可能出现C点的光强度小于额定值;线光源的长度过大,虽然能同时满足B、C两点光强度的要求,但线光源的功率也增大了。我们的目的就是在B、C两点光强度满足题目要求的情况下,求出最小的线光源长度。

另外还要特别注意对“光强度”这一概念的理解,我们认为它和物理学上的“发光强度”是一致的。按光度学中的定义,发光强度是某一方向上单位立体角内所辐射的光通量大小。一般不是用肉眼可以观察到的,主要的测量仪器是前照灯检测仪(参看中国汽车检测网—前照灯检测)。其构件一般是采用具有把吸收的光能变成电流的光电池元件,按照前照灯主光轴照射光电池产生电流的比例,来测量前照灯的发光强度。由于本题中的光源不是点光源,直接求光强度比较困难,我们通过对光照度的测量来近似反映B、C两点光强度的大小。光照度是单位面积上所接受的光通量的大小,用来衡量被照明表面明暗程度的物理量。

二、模型假设:

1、基本假设

(1)光线通过车灯的前玻璃时能量无损失。

(2)光线在抛物面进行一次反射时,能量考虑成无损失。

(3)不考虑二次反射。

(4)不考虑光的干涉和衍射现象。

(5)截取线光源上很小的一段dl,可以看成是在空间呈均匀辐射的点光源。于是线光源可以看成是无穷多个点光源的叠加。

(6)不考虑线光源对反射光能量的阻挡和吸收,即是说线光源不考虑厚度,反射光线可以毫无影响地穿过线光源区域。

2、符号说明

h----------------车灯的深度,h=21.6mm

f---------------车灯的焦距

----------------线光源的长度

Q ---------------单位长度上线光源的光通量,一个点光源的光通

量可以近似记为Qdl

F ------------- 一个点光源的光通量大小F =Qdl I ----------- 一个点光源的发光强度 ,

I

F 4

三、 模型建立及求解:

定理1:灯泡的焦距f =15mm

证明:我们以光轴的正方向为x 轴,竖直 方向为z 轴,水平方向(AC 方向)为y 轴,抛物面的顶点为原点建立空间直角坐标系。如图是抛物面在z=0时的函数图象,设函 数为px y 22

= 则焦距f =

2

p

,由抛物线的定义MN MF =,得

6.212

)26.21(26.212+=-

+?p

p p 解得p=30,所以f =15mm 。 #

因此曲面方程:

x

y 602

=,

]6.21,0[∈x

作出的图象见右图。

该模型是一个单目标非线性规划问题

Min )(l P

其中K 是某一要求的额定光强度,

E

B

,

E

C

分别表示线光源在B,C 两点的光强度

我们的目的就是求出满足P 最小的

l

光子跟踪模型:

本题中线光源可以看成是许多个点光源的叠加,只有焦点处的那个点光源通过抛物面后的反射光线是平行光束。其它点光源的反射光线都不是平行光束,因此射到屏上的总光线分布比较复杂,难以求出解析表达式。但并不是无规律所寻,

给定了空间的一个点光源G(15,y1,0) ,(其中]2,2[1l

l y -∈ ),再给定抛物面

T:x z y 602

2

=+ ()6.210≤≤x 上的一任点P(x0,y0,z0),则反射光线就可

以根据y1,x0,y0,z0这四个参数唯一确定了。下面我们就根据光的微观粒子性结

合反射光线的曲线分布建立光子跟踪模型。

这一模型的主要思想是把光能粒子化,及时纪录每一个“光子”的运动轨迹,判断最终到达屏上的具体位置。最后把每个小面积区域内的“光子”总数进行叠加,就得到了屏上光通量的分布图,进而求出光照度和光强度的分布。例如对于

点光源G(15,y1,0) ,(]2

,2[1l

l y -∈ ),设其光通量为F ,单位时间内辐射出的

“光子”数为M(为提高精度,M 可以取得大一些,如1000,000个),则每个光子所带能量为F /M (一秒钟内),且这些“光子”围绕G 点在空间是均匀发射的。一部分“光子”通过灯泡外玻璃壳直接射出(这一部分能量非常小,我们在模型的进一步讨论中将继续讨论),绝大多数的“光子”通过抛物面反射一次后射出,还有可能出现“光子”在抛物面反射两次,在反射第二次时,我们设想该“光子”就被牢牢的地粘在了抛物面上(这种情况概率也很小,模型改进中将继续讨论)。

通过把线光源选取一定步长dl 做为一个点光源,可以得到N 个点光源(N=][dl

l

),

{

k

E k E B C 2≥≥

我们把这N 个点光源在屏上某一小区域内的光子数进行求和,就可以求得该小区域内的光照度值

我们先分析一下任一个点光源G(15,y1,0) ,(]2

,2[1l

l y -∈)在抛物面上任

一点P(x0,y0,z0)的反射曲线. 为了直观的理解我们在平面上做出了大致反射光线图,实际上这些点图并不是在一个平面上的(见图2)。G 是点光源,P 是反射点,E 是G 点关于过P 点切平面的镜面对称点,PN 是反射方向。

由空间解析几何的知识,我们不难得出E 点坐标: x2

15

2

3600x0

60y02

120y0y160z02

36004y02

4z02

y2

y1

2

1800y0

120x0y04y03

3600y14y0z02

4y1z02

3600

4y02

4z02

z2

2

1800z0120x0z0

4y02z0

4y0y1z0

4z03

36004y02

4z02

进而由反射光线PN 和屏面方程x=25015可以求出反射光线打在屏上的坐标K(x3,y3,z3),由

Mathematica计算结果见下表。公式较长,但我们在用计算机进行模拟时需要用到

y3

25015

y0y1

21800y0120x0y04y033600y14

y0z024y1z0236004y024z02

15x023600x060y02120y0y160z02

36004y024z02

y015x023600x060y02120y0y160z02

36004y024z02

x0

y0y1

21800y0120x0y04y033600y14

y0z024y1z0236004y024z02

15x023600x060y02120y0y160z02

36004y024z02

,

z3

25015z021800z0120x0z04y0

2z04y0y1z04z03

36004y024z02

15x023600x060y0

2120y0y160z02

36004y024z02

z015x0

23600x060y02120y0y160z02

36004y024z02 x0

z0

21800z0120x0z04y02z04y0y1

z04z0336004y024z02

15x0

23600x060y02120y0y160z02

36004y024z02

,

x325015

数据采样:

下面我们就给出具体做法,首先要进行数据采样,即是说给定一个点光源G ,让它遍历抛物面上的所有点。我们遍历的参数是θ和r (]36,0[∈r ,θ∈[0,360degree])。 其中r 是抛物面上的一点到x 轴的垂直距离,垂心为x r

θ是以x r 为圆心,r 为半径上的圆转过的角度。则抛物面方程化为????

?

??

???????????===θθsin cos 602

r z r y r

x

(如图3)

当我们的θ,r 定了时,抛物面上一点也定了。θ,r 分别变动很小的

d ,dr 时,光线将在抛物面上扫出一个小面积dS1, 这个面积非常小,我们

可以近似的认为是一个小平面,光线照射就可以看成是镜面反射。我们设想有一

个虚拟光源G ’, G ’ 是G 关于dS1的镜面对称点.则从G 点反射出的光线完全可以等效看成是从G ’点直射出的光。设G ’点通过dS1射到屏上的面积为dS2,由光度学的知识可以得到dS2上的光照度

E

dF dS2

Icos d 2

其中dF 是点光源G 在dS1面上的光通量,d 是G ’到dS2的距离,是从G ’射出

光线与x 轴的夹角。给定点光源G ,给定θ,r 和 d ,dr 时,光线在屏上的位置和照度就唯一确定了。

下面我们就建立算法来实现遍历过程。

1、 等间距光子跟踪算法

step 1 选定点光源步长dl,确定点光源个数N=][

dl

l

,每个点光源1秒内通过的光子数为设为M=100000,

step 2 将吸收屏均匀分割成面积为ds 许多小正方形,记下位置和编号 step 3 选定d ,dr ,分别确定θ和r 的遍历次数,

N1

36dr

,

N2

2d

,每

次遍历对应的dS1通过的光子数记为相同

step 4 for(I=1;I<=N;I++)

for(j=1;j<=N1;j++) for(k=1;k<=N2;k++)

{ 计算打到屏上的光子位置,累加每个小正方形上光子数, } step 5 是否完毕,返回

根据上述算法我们利用所得离散数据作出了光线在屏上分布的形状图,

上图是线光源长度等于6mm时做出的图,由图可以看出反射光线在屏上的形状是心型。其它长度作出图的形状也大致呈心型,只有处在焦点处的那个点光源在屏上的光照度是大致呈圆形分布的(即是说线光源非常短,浓缩到一点

的极端情况,l≈0mm)(见图6)。这和实际情况也是比较符合的,而且可以看出光照度的分布规律是中间大(非常大),周围小。

但算法1有严重的理论不足之处,它只能反映反射光线在屏上的形状,而不能很好的反映在屏上的照度变化情况。出现这一情况的原因是在进行步长遍历时,把每一次对应的dS1上通过的光子数考虑是一样的了,实际上是不相同的。另外由于光屏离的很远(相对于抛物面的大小来说),在抛物面上的dS1很小,但发散到屏上时的光斑dS2可能比较大,如果还把它看成一个质点来处理也是不合理的。光子从点光源向空间各个方向是均匀发射的,我们应该以通过等光子数的小单元进行遍历。这在以点光源为中心的球坐标上可以等角度遍

历,但反映到以d,dr进行遍历时,通过相同光子数对应d,dr应该是变步

长的,为了便于操作,我们仍然实行等步长遍历,只是对于每一步的光照度我们定义了一个权,这个权值的大小和θ,r是有关系的,而且由于第二个原

因的影响,故我们采用分布叠加的方式求屏上的光照度。(见图7)它的主要原理是一条光线反射到抛物面上后计算其光照度,然后又把这个反射点近似的看成是点光源,只不过是光强度变小了,再根据光照度公式可以求出屏上的光照度分布。这种算法很好的减少了由于距离太长带来的模型误差。

设点光源G(15,y1,0)发出的一条光线与抛物面交于P

r2,rcos,rsin,则其光照度

E1

dF

dS1

Icos1

d12,

从p点反射后,我们可以把p点看成是一个光源,则打到屏上M点的光照度就为,

E2dF

dS2

Icos1

d12

.

cos2

d22

再将每个点光源经抛物面反射的光线在屏上的光照度进行叠加就可以得出B、C点光照度的比例关系。

有关计算结果如下,

入射方向n1 : r 2

60

15,rcos y1,rsin 0

出射方向i : 25015x 2,y3y2,z3z2

cos

1

i.n1

n1.i

r 22

450r y1cos

900y121800rcos y12r 3cosy1r 63600

34

r 4675y02r 2

cos

2

t.n2

n2

t

25015

x2

25015

x2

2

y3y22

z3z2

2

d12

i 2

r 43600

r 222ry1cos

y12225

d2

2

PM

2

25015

r 2

602

y3

rcos

2

z3rsin

2

Q r,

cos 1

d12

.

cos 2

d22

Q 即是我们要设定的权值,它和 r,

有关,则照到屏上M 点的光照度为

E r,

I

Q

r,

cos 1

d12

.

cos 2d22

.I

cos 1

d12

.

cos 2d22

.

F 4

然后我们对θ,r 等步长进行遍历,每一补加上相应的权值就可以得到光照度在屏上的分布规律。

2、改进的等间距跟踪算法

只需要把算法1的step 3改为

step 3 计算等步长内反射到屏上加权光

照度

由算法2我们得到的光照度在屏上的一组

分布分布图(图8A ),图8A 是线光源长度

l=3.0mm时的照度分布图。该图象从直观上看能很好的反映光的明暗情况。但这里得到的图象并不是我们在实际生活中所看到的光斑。光度学中唯一能用眼睛感受的物理量是光亮度,即是我们平常所说的亮度。但光照度的分布和光亮度的分布大致是相同的,可以用照度来反映亮度的分布情况。

3 等效立体角跟踪算法

算法2虽然考虑到加权的因素,但加权是利用光强加权,显的不是很合理。对此我们提出等效立体角跟踪算法。其原理是变步长进行d,dr的遍历,但每一步所对应小面积上的立体角是相等的。每次遍历到下一点后的d,dr值和θ,

r以及前一步的d,dr是有关的。我们找出了它们之间的关系就可以看成是等效相同的立体角进行遍历。图9是这个算法的流程图,图9A是这个算法得到的一组屏上光照度分布图。

,

图9

4 随机方向跟踪算法

前面三种算法都是确定性算法,需要在抛物面上取样跟踪,而且还要等效处理变步长问题,计算比较复杂,而且容易产生模型误差。为此我们提出随机方向跟踪算法,这是一种概率算法。原理很简单,我们定义一个随机方向

P{a,b,c},(a,b,c∈[-1,1] ) 。利用计算机按均匀分布产生M对{a,b,c}的值,M一般都取的比较大(例如M=1000000)。只要M足够大,随机方向P就可以看成是在空间呈均匀散开的。我们只需要对每一个方向求出在屏上的照射点。累积屏上单位面积的反射光线条数,就可以得到光照度的分布。该方案执行简单,但也有不足之处,实际上空间分布应该呈球状均匀分布,而不是呈立方体。我们也可以等效加权处理。步骤如下

(1)对于产生的随机方向P,如果落在以1为半径的球内,则权值为1.

(2)对于产生的随机方向P,如果落在以1为半径的球外,则权值为1/d.其中d为该点到球心的距离。

运用算法3对程序进行少量改动,我们作出了屏上光照度的分布图(图8C)。和图9A相比两者几乎完全相同,说明我们的随机方向算法算法是可靠的。上面的处理方法也是一种近似方法,可以用数学论证严格的推出权值应满足的规律。另外由于是随机产生的发射方向,总有可能出现方向分布不是很均匀的情况,最好是进行方差检验或是增加划分细度。

灯丝长度的范围的讨论:

我们先从理论上来分析灯丝长度应满足的关系式。线光源发出的光经抛物面反射后如果能直接照到B点和C点,则反射点应该在z=0的抛物线上。因此我们可以只研究z=0的抛物线上的反射规律来确定线光源长度的范围。线光源长度如果太短了,反射出的光可能照不到C点(极端情况线光源长度为0,全部反射出平行光,不能照到B,C点,随着线光源长度的增加,能逐渐照到B,C点。当线光源长度继续增加到某一值后,超过这一值的长度部分发出的光经反射后将不能照到C点,而会出现在C点以外。这一部分光线做的就是额外功,因此线光源的最优长度应在某两个特定植之间。

我们在Mathematia中求得了给定点光源G(15,y1,0)情况下,反射光线斜率r 随x0的变化函数

r 60x0227000x01800x0

2216000x03900y1

9003600x02

y1 15x03060x03600x0

2120x0y1

9003600x02

其中x0是抛物线上的点,x∈[0,21.6],当y1给定了时r随x0的函数图象是单调变化的,图9给出的是y1=3mm的情况(反射点纵坐标y0>0的图象,)。

由图可以看出斜率是单调下降的,x0=0处斜率最小,但不为0 ,原因是y1不等于0,y1越大,图象在y轴的截距也将大些。由图象的单调性我们可以推知,线光源

长度下界1l应满足的临界条件是点光源G(15,y1,0)在(21.6,-36,0)处的反射光线恰好过C点,由于只考虑了(21.6,-36,0)的情况,还应该考虑(21.6,36,0)点

的情况,二者求出的较小一个2 y1值就是长度下界1l。对于长度上界满足的邻界条件刚好相反。临界条件是点光源G(15,y1,0)在(21.6,36,0)处的反射光线恰

好过C点。经过解方程计算得到 1.53881=l/2 <=1.58202, 即

3.07762

上面考虑的是单位长度光通量一定时候,线光源长度应满足的条件。如果我们把线光源的总功率看成是一定的,则单位长度的光通量是随线光源的长度而变化。因此l的上界就不能用上面的方法去判定。但下界是一样的,因为下界是一个突变的过程,如果线光源长度少于下界值1l=3.07762,是不可能有光到达C 点的。对于上界也可以定性判断规律,当线光源长度超过3.16404时,B,C两点

的光强度是随l的增大而减少的。这是因为超过3.16404的部分不会再照到B,C 上,但由于总功率一定,长度在3.07762

线光源最优长度值的确定:

我们利用算法2得到的数据分析了线光源长度l的变化对B、C两点光强度影响的情况,拟合曲线见图10。

图中x轴表式灯丝长度,y轴表示光照度,由于我们采用的是光子跟踪模型,y轴的值比较大,但并不影响B,C两点光照度的相对关系。最优线光源长度只和他们之间光照度之比有关。如果把线光源的功率给定了(光通量也定了),则线光源的长度越长,单位长度的光通量越小,到达B,C两点的光强度越小。极端情况线光源无穷长,超过临界长度的发光部分都浪费了,射到B,C 点的光强度就十分小,不能满足题目要求的达到某一额定值。直接从该图上还不能确定最优线光源的长度值。所以我们作出了在线光源功率一定的情况下B,C点光照度之比随线光源长度变化的函数图象。

当B点光照度小于等于C点光照度2倍时,制约满足原题条件的额定功率

P大小的必要条件是B点光照度,因为,当B点光照度满足>=2P时,C点光照度必满足>=P;

当B点光照度大于等于C点光照度2倍时, 制约额定功率P大小的必要条件是C点光照度,因为,当C点光照度满足>=P时,B点光照度必满足>=2P;

我们是在功率一定的条件下对线光源长度进行模拟搜索,所得数据点经过拟合处理后,得到上面的两条曲线,当L增大时;起初, B点光照度大于等于C点光照度2倍, B是制约额定功率P大小的主要因素,经过一段距离后,B点光照度小于等于C点光照度2倍, C成为制约额定功率P大小的主要因素;综合分析得

L/2=2.1685倍附近时,得到满足在功率一定的条件下的最大额定功率条件,而原题恰好是一个逆向思维,当额定功率一定时,分析求解满足最小功率条件的线光源的长度,可见,这于固定功率,求可满足的最大额定功率是等价的。我们作出了在线光源长度L=4.337mm情况下屏上的反射光亮区(见图11),这即是第二问的答案

四、模型的进一步讨论:

前面的模型都是不考虑直射的情况得出来的,实际上射到屏上的一部分光还有来自于灯泡直射的部分。因此严格的说光斑的形状还要大些,但也不是圆形,而应该接近于椭圆型。只是由于直射部分的能量占的比重太小,看起来还是心型起绝对作用。但这也反映了设计规范性的合理问题。

下面我们就来推导一下直射时光照度应满足的规律

设点光源G(15,y1,0) ,所带光通量为Qdy1,直射到屏上AC方向的坐标为M(25015,y3,0)

则该点光源在M点的光照度为

E I cos

d2

I

25000

y3y12250002

3

2

Qdy1

4

25000

y3y12250002

3

2

那么线光源在M点的光照度就是这些点光源在该点的积分(y1∈]2/

,2/

[l

l )

E M

l 2

l 2

Qdy 14

25000y3

y1

2

250002

32

y 1

将这一部分光强也考虑进去,我们得到更加合理的线光源长度值L=4.337mm 这个值比仅考虑反射的情况要稍微大一些。但也可以看出直射光线的能量相对于 反射光线的能量是很小的一部分,近似计算中完全可以不考虑。

另外还需要考虑2次反射的情况,可以根据反射光线与抛物面方程的交点来判别是否出现2次反射。如果有两个交点就会出现二次反射。二次反射在实际生活中一般是有能量损失的。为了设计更加合理,我们可以对发生二次反射的光线进行加权处理,比如我们可以设所有发生二次反射的光线能量损失10%。对本题我们进行模拟求解,得到的L=4.303mm ,这个长度和不考虑二次反射的值完全一样。我们可以认为几乎没有光线发生二次反射或者说是只有几跟光线发生二次反射。对于本题而言可以不考虑二次反射,但对于焦距比较大的抛物面而言,出现二次反射的机会增多,就不能不考虑了。图12是考虑这两种情况时的流流程图。

下面我们再讨论一下模型的规范性,我们认为该规范设计至少在三个方面是合理的。

(1)、线光源与地面平行。这样设计后的光照度分布是心形形状。且水平轴要比垂直轴的长度大。实际生活中车灯射出的光也是要水平方向的宽度尽量大。垂直方向上的跨度过大是没有多大的实际意义的。

(2)、最大程度上利用了光能的效率。该设计要求功率最小,又要使B,C 点光强度达到一定标准。自然就要使B,C 区域外浪费的光能最小,因此提高了效率.

(3)、简化了操作步骤。该规范设计中不考虑直射和二次反射,因此工作量减少了许多。实际上这种假设也是合理的,因为我们经计算发现考虑直射和二次反射对模型几乎没什么影响。

五、 模型的评价

本模型由于反射光线比较杂乱,不容易由解析方法求出最优解,所以我们借用物理上的光子追踪原理用计算机进行模拟求解。该模型至少有以下几个优点。

(1) 思路清晰,算法比较容易理解,方便实行。 (2) 可移植性好,可以推广到其他类型的曲面。

(3) 作图方便,可以用计算机得到的数据进行光斑亮度拟合,这是

一般解析法无法实现的。

但模型也存在不足之处,主要是计算结果精度不足,不能从理论上证明结果的最优性。但就数学建模本身而言,最重要的是符合实际,让人可以接受。我们得到的线光源长度虽然不是最优解,但已逼近最优解,也是很让人满意的。

数学建模课程设计报告范本

数学建模课程设计 报告 1 2020年4月19日

数学建模课程设计 题目: 学院: 专业: 班级: 姓名: 学号: 指导教师: 实验日期: 2 2020年4月19日

摘要 本文针对葡萄酒的质量分析与评价问题,以置信区间、优势矩阵、逐步回归分析等方法和方差分析理论为基础,首先分别构建了以评酒员和样酒为组别的方差数据序列,经过进行双向显著性检验,接着经过置信区间法处理的数据进行了方差分析,并确定可信的评价组别。然后以评酒员感官评价为主、葡萄酒的理化指标为辅,采用回归分析、聚类分析、判别分析法建立葡萄分级模型,继而使用相关系数矩阵确立葡萄酒与葡萄理化指标中具有较大相关性的指标,实现对葡萄理化指标的初步筛选,进行等级划分。再利用逐步回归的方法拟合酿葡萄酒理化指标与葡萄理化指标间一对多的函数关系得出二者之间的联系。最后经过上文函数关系,同时提取对香气与口感评分相关度较大的芳香物质,建立芳香物质与葡萄酒质量的函数关系,论证葡萄和葡萄酒的理化指标只在一定程度上对葡萄酒的质量有影响。 关键字:双向显著性检验;方差分析;置信区间;聚类分析;标准化; 1 2020年4月19日

一、问题重述 确定葡萄酒质量时一般是经过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的一级理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的一级理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的一级理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的一级理化指标来评价葡萄酒的质 2 2020年4月19日

数学建模小实例

数学建模小实例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员 解: 设i x为第i班应报到的人员 i,建立线性模型如下: )6, ( ,2,1 LINGO程序如下: MODEL:

min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢 解答:

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

基于 Matlab 的车灯线光源优化设计的实施方案

数学建模 基于Matlab 的车灯线光源优化设计的实施方案3欧宜贵 李志林 (海南大学信息学院应用数学系 海口 570228)摘要 给出了2002年全国大不生数学建模竞赛题“车灯线光源的优化设计”的实施方案,说明计算机仿真方法在数学建模中的有效性. 关键词 数学建模;计算机仿真;优化设计;Matlab6.0 中图法分类号 O242;TP311 2002年全国大学生数学建模竞赛题“车灯线光源的优化设计”是一道从实际问题提炼简化而来的数学问题.由于理论上的困难,很难得到满足设计要求的最优长度的线光源[1].本文借助科学运算语言Matlab610,[2]采用计算机仿真技术,求得满足设计要求的近似最优线光源的长度,体现了数学建模中计算机仿真方法的重要性. 1 问题重述 安装在汽车头部的车灯的形状为一旋转抛物面,车灯的对称轴水平地指向正前方,其开口半径36毫米,深度21.6毫米.经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源.要求在某一设计规范标准下确定线光源的长度.该设计规范在简化后可描述如下: 在焦点F 正前方25米处的A 点放置一测试屏,屏与FA 垂直,用以测试车灯的反射光.在屏上过A 点引出一条与地面相平行的直线,在该直线A 点的同侧取B 点和C 点,使A C =2AB =2.6米.要求C 点的光强度不小于某一额定值(可取为1个单位),B 点的光强度不小于该额定值的两倍(只须考虑一次反射).在满足该设计规范的条件下,计算线光源长度,使线光源的功率最小. 21问题分析 由于线光源是均匀分布的,要使线光源功率最小,其长度也应该较小.但若线光源的长度太小,有可能出现C 点的光强度小于额定值;若线光源的长度过大,虽然能同时满足B 、C 两点光强度的要求,但线光源的功率也增大了.我们的目的就是在B 、C 两点光强度满足题目要求的情况下,求出最优的线光源长度,又由于到达屏上某一点的光线数目与该点的光强度成正比,因此,可以将题中条件转化为:到达C 点的光线数目不小于某一额定值,到达B 点的光线数目不小于该额定值的两倍. 另一方面,在抛物线上任取一点,并利用光路的可逆性,分别求出能够到达B 点和C 点的入射光线方程.若入射光线与线光源所在直线的交点的纵坐标的绝对值不大于线光源长度的一半,即与线光源有交点,则表示该光线经反射后能够到达屏上的B 点或C 点.这可通过计算机仿真来实现. 3、模型的基本假设 (1)线光源看成是无数个点光源叠加而成; (2)不考虑光在抛物面上的折射,并且光在传播过程中,其强度不受空气的影响; (3)不考虑车灯前配置镜面对反射光方向的影响. 4、模型的建立及求解 以抛物面的顶点为原点O ,对称轴为x 轴,过点O 且与线光源平行的直线为y 轴,过顶点且与x 轴、y 轴垂直的直线为z 轴,建立空间直角坐标系.由题中所给数据可求得旋转抛物面的方程是:60x =y 2+z 2.根据光路的几何原理和空间解析几何的知识,易推出结论: 线光源发出的光线经抛物面反射后若能到达B 、C 两点,则反射点应在抛物线60x =y 2上.如 701Vol.9,No.4J ul.,2006 高等数学研究STUDIES IN COLL EGE MA T H EMA TICS 3收稿日期:2004-10-01

数学建模小实例

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机与乘务人员如下: 设司机与乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机与乘务人员? 解: 设i x 为第i 班应报到的人员 )6,,2,1( i ,建立线性模型如下: 6 1min i i x Z

,...,,3020 506070 60..62 1655 4433221 61x x x x x x x x x x x x x x x t s LINGO 程序如下: MODEL: min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机与乘务人员最少为150人。

2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问就是这人的功夫不到家还就是这个问题根本无解呢? 3、棋子颜色问题 在任意拿出黑白两种颜色的棋子共n个,随机排成一个圆圈。然

后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢? 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这就是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a L 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a 4 12a a 23a a 31a a 说明当n=3时,经过3步进入初始状态。 当n=4时 步数 状态(舍掉偶次项) 0 1a 2a 3a 4a 1 21a a 32a a 43a a 14a a 2 31a a 42a a 31a a 42a a 3 4321a a a a 4321a a a a 4321a a a a 4321a a a a 4 24232221a a a a 24232221a a a a 24232221a a a a 2 4232221a a a a

环境数模课程设计说明书

2016《环境数学模型》课程设计说明书 1.题目 活性污泥系统生化反应器中底物降解与微生物增长数学模型的建立 2.实验方法与结果 2.1.实验方法 2.1.1.工艺流程与反应器 本设计采用的工艺流程如下图所示: 图2-1 活性污泥系统工艺流程图 本设计工艺采用活性污泥法处理污水,工艺的主要反应器包括生化反应器和沉淀池。污水通过蠕动泵恒速加到生化反应器中,反应器内活性污泥和污水在机械搅拌设备和鼓风曝气设备的共同作用下充分接触,并在氧气充足的条件下进行反应。经处理后,污泥混液通过管道自流到沉淀池中,在里面实现泥水分离。分离后的水通过溢流堰从周边排出,直接被排放到下水道系统,沉淀下来的污泥则通过回流泵,全部被抽回进行回流。 系统运行过程中,进出水流量、进水质量、污水的停留时间、生化反应器的容积、机械搅拌设备转轴转速、鼓风曝气装置的曝气风量气速、污泥回流量等参数在系统运行的过程中都保持不变。待系统持续运行一周稳定后再取样进行分析。 实验的进水为实验室配置的污水,污水分别以葡萄糖、尿素、磷酸二氢钾为碳源、氮源和磷源,其中C:N:P=100:40:1(浓度比),TOC含量为200mg/L。生化反应器内污泥混液的容量为12L,污水停留时间为6h。系统运行时间为两周,第一周是调适阶段,第二周取样测试,测得的数据作为建模的原始数据。 表2-1 污水中各营养物质的含量 2.1.2.取样方法

每隔24h取一次样,通过虹吸管取样。每次取样时,先取进水和出水水样用于测水体的COD指标,其中进水直接取配得的污水溶液,出水取沉淀池上清液。取得的水样过膜除去水中的悬浮固体和微生物,保存在5ml玻璃消解管中,并在4℃下冷藏保存。 取完用于测COD的水样后,全开污泥回流泵,将沉淀池中的污泥全部抽回生化反应器(由于实验装置的原因,沉淀池排泥管易堵,污泥易积聚在沉淀池中,为更准确测定活性污泥的增长情况,在此实验中将泥完全抽回后再测定),待搅拌均匀后,取5ml污泥混液于干净、衡重的坩埚中,待用于测污泥混液的SS。 2.1. 3.分析方法 本实验一共分析进出水COD和污泥混液SS两个指标。其中COD采用《水质快速消解分光光度法》(HJ/T 399-2007)方法进行分析,SS采用《水质悬浮物的测定重量法》(GB 11901-89)方法进行分析。 准确取2ml经过膜处理的水样于5mlcod消解管中,以重铬酸钾为氧化剂,硫酸银-浓硫酸为催化剂,硫酸汞为抗氯离子干扰剂,按一定比例与水样混合均匀。将消解管放在COD 消解仪中,在150℃条件下消解2h。待经消解的溶液冷却后,以空白样为参比液,在COD 分析仪上读出待测水样的COD值,记录数据。 将装在已衡重称重的坩埚中的污泥混液放在烘箱中,在105℃温度下烘3h以上,保证污泥中的水分被充分除去。坩埚冷却后衡重称重,记录干污泥的质量,求得活性污泥的SS。 实验过程的所有样品都设置两个平行样,最后结果取平行样的算术平均值。 2.2.实验结果 2.2.1.实验数据 实验测得数据如下表: 表2-2 活性污泥系统水质分析结果 2.2.2.数据分析

maab数学建模实例

第四周 3. function y=mj() for x0=0::8 x1=x0^*x0^2+*; if (abs(x1)< x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>= x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>= x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法:

function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>= x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel 迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>= x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a)); U=-triu(a,1);

数学建模(路灯)

数学模型实验论文

路灯安置优化问题 一、摘要: 现代社会,经济不断发展人民生活水平不断提高,国家采取了一系列的措施让人民生活得更舒适,而在路上安装路灯就是其中一项重要的举措。这里我从一盏灯的照明情况的分析出发,研究怎样合理的设计路灯的度和路灯之间的间距才能满足人们的需求。首先分析路灯照明的特性,然后建立一盏灯时面积使最大的模型及两盏灯时时路灯间距最大的模型,在此基础上建立一排路灯及两排路灯的数学模型,分析两种情况何时须灯数最少即最节约能源,其中由实际情况和生活经验来看,两排灯时交错分布照明是比较均匀的,所以在两排灯时考虑灯交错分布的情况。 关键词: 照明强度、路灯设计、路灯高度、间距的优化 二、问题的提出: 目前大多数公共场所都安装了路灯,路灯的高度和路灯之间的间距一般是依靠经验进行设置的,并没有从优化的角度进行考虑。在能源日益减少的今天,我们应该考虑怎样尽可能的节约能源,并且作为路段整体设计的一部分路灯的安排也直接影响到社会公共环境。经过对我校校园内几条道路的路灯设计的观察,对校园整体室外照明有了一定的了解。在调查时A路正在安装路灯,为获取数据的方便取该路段为研究对象。

三、背景知识: 1.光强度:光源在一定范围内发出可见光辐射强弱的物理量。以光源在某一方向上单位立体角辐射的能量来量度。(单位:坎德拉) 2.照度:单位面积上得到的光通量。(单位:勒克司) 3.通量:人眼所能感觉到的光辐射的功率。单位时间光辐射的能 和相对视见率的乘积。(单位:流明) 4.对于眼睛最敏感的 波长的黄绿光来说,1流明相当于1/685瓦特。一般常见或需要的照度:晴朗夏天室外背荫处得照度为1000-10000流明。 5.为保证在该路段上处处都能有满足正常活动需要的照明强度,取照度的最小值为 ,即为13700流明。 6.照度定律:点光源O 预备照明平面中心A 的距离为h 时,平面上A 点的照度。 符号规定: p 为 O 点的光强度,a 为平面的法线方向与光源到A 点的连线之间的夹角,h 为光源的高度,l 为光源到A 点的距离。 四、模型的假设: 1. 假设高度和间距的优化问题为简化模型设路灯的额定功率为定值(注:数据来源 A 路的路灯标签额定功率为220伏,额定电流为10安,所以取额定功率)。 m 7105.5-?2/20m w

数学建模课程设计汇本参考模板

2015-2016第1学期数学建模课程设计题目:医疗保障基金额度的分配 : 学号: 班级: 时间:

摘要 随着人们生活水平的提高及社会制度的发展,医疗保险事业显得越来越重要,各企业也随之越来越注重员工的福利措施,医疗保障基金额度的分配也成为了人们的关注热点。扩大医疗保障受益人口也是政府和企业面临的难题,因而根据历史统计数据,合理的构造出拟合曲线,分析拟合函数的拟合程度,从而为基金的调配以及各种分配方案做方向上的指导。 本文针对A,B两个公司关于医疗保障基金额度的合理分配问题,根据两公司从1980-2003年统计的医疗费用支出数据,科学地运用了MATLAB软件并基于最小二乘法则进行了多项式曲线拟合,成功建立了医疗保障基金额度的分配模型。最后,对不同阶数的多项式拟合曲线的拟合程度进行了残差分析,并输出相关结果,得出拟合程度与多项式阶数的关联。 此问题建立在收集了大量数据的基础上,以及利用了MATLAB编程拟合曲线,使问题更加简单,清晰。该模型经过适当的改造,可以推广到股票预测,市场销售额统计等相关领域。

关键字:matlab,最小二乘多项式拟合,阶数,残差分析 一.问题重述 某集团下设两个子公司:子公司A、子公司B。各子公司财务分别独立核算。每个子公司都实施了对雇员的医疗保障计划,由各子公司自行承担雇员的全部医疗费用。过去的统计数据表明,每个子公司的雇员人数以及每一年龄段的雇员比例,在各年度都保持相对稳定。各子公司各年度的医疗费用支出见下表(附录1)。 试利用多项式数据拟合,得到每个公司医疗费用变化函数,并绘出标出原始数据的拟合函数曲线。需给出三种不同阶数的多项式数据拟合,并分析拟合曲线与原始数据的拟合程度。 二.模型假设 1.假设A,B两公司在1980年底才发放医疗保障基金。

车灯线光源的优化设计_2002年全国大学生数学建模A题论文

2003年第18卷第4期 电 力 学 报 Vol.18No.42003 (总第65期) J OU RNAL OF EL ECTRIC POWER (Sum.65) 文章编号: 1005-6548(2003)04-0262-02 车灯线光源的优化设计 ———2002年全国大学生数学建模A题论文Ξ 郭 洋1, 常 哲1, 刘品贤1 (11山西大学工程学院,山西太原 030013) Optimum Design of H eadlight’s Filament ———Mathematical Contest in Modeling in2002 GUO Yang1, CHAN G Zhe1, L IU Pin2xian1 (11Engineering College of Shanxi University,Taiyuan 030013,China 030013,China) 摘 要: 根据设计规范的要求对线光源的最短长度进行了数值分析。首先用解析法建立了一个多元函数模型得出合理的数值,然后利用向量代数知识借助MA TLAB模拟出屏上的蝶形形状亮区。 关键词: 数学模型;多元函数;优化设计 中图分类号: O182 文献标识码: A Abstract: A numerical analysis of the shortest length of headlight’s filament is made in the paper. A multiplex function model is established on the basis of optical principle and then an extent is drawn in the light of MA TLAB. K ey Words: mathematical model;multiplex func2 tion;optimum design 1 题目描述 现知一汽车前灯的形状为旋转抛物面,开口半径36mm,深度21.6mm,其对称轴水平地指向正前方。经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源。要求在某一设计规范标准下确定线光源的长度。 该设计规范在简化后可描述如下。在焦点F 正前方25m处的A点放置一测试屏,屏与FA垂直,用以测试车灯的反射光。在屏上过A点引一与地面相平行的直线,在该直线A点的同侧取B点和C点,使A C=2A B=2.6m。要求C点的光强度不小于某一额定值(可取为1个单位),B点的光强度不小于该额定值的两倍(只须考虑一次反射)。 需要解决下列问题: a1在满足该设计规范的条件下,计算线光源长度,使线光源的功率最小。 b1对得到的线光源长度,在有标尺的坐标系中画出测试屏上反射光的亮区。 c1讨论该设计规范的合理性。 2 问题分析 a1问题要使线光源的功率最小,即可等效为线光源的长度最小。因为理想线光源可视为由无穷多个点光源组成,其功率相应等价为无穷多个点光源功率的积分。 b1光强是单位面积上通过的光通量,据此可知光强与发光点的发光功率成正比,与距离发光点的 Ξ收稿日期: 2003-06-27 作者简介: 郭 洋(1982-),男,河南南召人,山西大学工程学院动力工程系学生; 常 哲(1979-),男,山西芮城人,山西大学工程学院动力工程系学生; 刘品贤(1981-),男,浙江乐清人,山西大学工程学院动力工程系学生。

车灯线光源的优化设计(第二组)

车灯线光源的优化设计 摘要 题目要求我们针对确定的设计规范,计算线光源的长度,然后再根据线光源的长度讨论该设计规范是否合理。 针对题目的任务,我们采用物理光学的知识和数学极限思想建立模型,根据题目的要求对线光源反射在屏幕上的光照强度进行了研究,并按照要求完成了线光源的优化设计。 对于问题一,采用了对线光源无限分割成线元的点光源的极限思想,并求出每个点光源经抛物面反射后照在测试屏幕上的光照强度,在B ,C 两点利用区 域法将圆区域的光照强度的和代替点的光照强度,再根据B , C 光照强度的关系,最后求得: l =4mm 对于问题二,在问题一的基础上可以利用matlab 将带坐标的亮区绘出来,(结果见图5,第7页) 对于问题三,夜晚行车司机在看清障碍物时,从反应到到制动停止的距离为h ,其取值范围是: 23.6926.69m h m ≤≤ 取26.69h m =>25m ,所以我们希望设计规范能够将25m 提高到30m 以外,提高司机的人身安全,同时考虑强度问题,为了确保在在30m 外能够辨出障碍物,屏幕上相应的B 和C 点的距离也要相应提高,并且线光源的长度也要适当增长,以确保有足够的强度。(具体长度呢?) 关键词:数学无限分割极限思想 光照度平方反比定理 光照强度

一、问题的重述 1.1问题背景 安装在汽车头部的车灯的形状为一旋转抛物面,车灯的对称轴水平地指向正前方, 其开口半径36mm,深度21.6mm。经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源。要求在某一设计规范标准下确定线光源的长度。 1.2目标任务 该设计规范在简化后可描述如下。在焦点F正前方25m处的A点放置一测试屏,屏与FA垂直,用以测试车灯的反射光。在屏上过A点引出一条与地面相平行的直线,在该直线A点的同侧取B点和C点,使AC=2AB=2.6m。要求C点的光强度不小于某一额定值(可取为1个单位),B点的光强度不小于该额定值的两倍(只须考虑一次反射)。解决如下问题: (1)在满足该设计规范的条件下,计算线光源长度,使线光源的功率最小。(2)对得到的线光源长度,在有标尺的坐标系中画出测试屏上反射光的亮区。(3)讨论该设计规范的合理性。 二、问题分析 该问题属于物理学中的光学问题,对于线光源发射出来的光为无数条,我们无法运用整体思想进行建立模型。 对于问题一,我们运用无限分割成微元的极限思想,将线光源分成无限n (n=1,2,3…)份线元,然后计算出每份线元经过车灯抛物面反射后射在测光屏上的光照强度 E,进而可以对光照强度在,B C两点的极小区域进行求和,最后 n 要使线光源的发光功率最小,尽量满足B点处的光照强度接近C点处的两倍,由光照强度,功率与线光源之间个光线可以求出线光源的最小长度。 对于问题二,在问题一的基础上,在计算线元的光照强度时模拟光线的反射可得到反射光的亮区图。 对于问题三,结合实际与计算结果,以夜间行车的安全性讨论设计规范的合理性。 最后由模型和结果对该规范的合理性进行讨论修改。 三、基本假设 1.假设光线在经过抛物面反射所造成能量损失忽略不计,只考虑光线随距离的变化而产生的能量损失。 2.假设抛物面光滑,无凹凸不平,对光线无额外的作用,除了正常的反射。 3.由于要测试的,B C两点离屏幕A点距离远远大于旋转抛物面的最大口径故忽 略线光源对测光屏幕直射的光照强度,只考虑反射对测光屏幕光照强度的影响。 4.假设车灯发光均匀,光强均匀。 5.假设每份光线元经抛物面反射后,光强度为1个单位。

数学建模--路灯问题

校园路灯问题优化 一、问题描述 1.问题背景 路灯已成为夜晚比不可少的工具,不管是在街道,还是校园都随处可见。随着路灯的增加,如何合理解决路灯问题便成为一个重要问题。在能源日益减少的今天,我们应该考虑怎样尽可能的节约能源,并且作为校园整体设计的一部分路灯的安排也直接影响到学校环境,对于夜晚校园环境的烘托具有非常重要的意义。 2. 主要问题 经过对校园内几条道路的路灯设计的观察,对校园整体室外照明有了一定的了解。 主要从三个方面优化校园路灯问题。主要侧重于其布局优化。 (1)校园路灯分布规划:在照明强度的要求已知时,寻求一种路灯安置方案,(选定合适的路灯高度、路灯之间的间距),使路灯的安置达到要求,同时路灯的数量尽可能减少,路灯的能耗达到最低。 (2)校园路灯开放时间优化。 (3)校园路灯维护优化。 3. 问题研究的意义 通过对路灯问题的研究,找到一种安置方案,优化现有路灯布局,使路灯能耗降低,以节省经济投入。 二、问题分析 要使能耗最小,在路灯功率一定的情况下,只能减少路灯的使用量。因此,在满足最低照明功率的前提下,通过改变路灯的高度来使路灯之间的距离达到最优是本问题的一个解决方案。 三、模型假设 (1)所有路灯都紧靠在路的边界线上,且照明效果都相同。光源是点光源。在单个光源照射下,距光源L的点的光照强度为C=f(L);在多光源照射下,某一点的光照强度为各光源对该点光照强度的代数和。道路处处等宽,路面上每一点的光照强度至少要达到C0。 (2)假设路灯为完全规范的,即处处等宽,一排路灯的宽度为,两排路灯的宽度为。 四、变量说明 1. 照度定律:点光源O的发光强度是,则距点光源O为的点的照度为 2. 参量变量说明: (1)设路灯的高度:h,路的宽度: (2)经过实际考察,路灯的功率:=2200W (3)路灯的间距:

数学建模课程设计

攀枝花学院 学生课程设计(论文) 题目:产品广告费用分配对销量及利润的影响模型学生姓名:梁忠 学号: 201210802007 所在院(系):数学与计算机学院 专业:信息与计算科学 班级: 12信本1班 指导教师:马亮亮职称:讲师 2014年12 月19 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 题目具有自身阻滞作用的食饵—捕食者模型 1、课程设计的目的 数学建模课程设计是让学生通过动手动脑解决实际问题,让学生学完《数学建模》课程后进行的一次全面的综合训练,是一个非常重要的教学环节。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 根据指导教师所下达的课程设计题目和课程设计要求,在规定的时间内完成设计任务;撰写详细的课程设计论文一份。 3、主要参考文献 【1】姜启源,数学模型(第二版),高等教育出版社,北京。 【2】寿纪麟,数学建模——方法与范例,西安交大出版社。 【3】(美)JOHN A.QUELCH 等著吕—林等译,市场营销管理教程和案例, 北京大学出版社 2000。 【4】戴永良广告绩效评估,中国戏剧出版社,2001。 4、课程设计工作进度计划 序号时间(天)内容安排备注 1 2 分析设计准备周一至周二 2 4 编程调试阶段周三至周一 3 2 编写课程设计报告周二至周三 4 2 考核周四至周五 总计10(天) 指导教师(签字)日期年月日 教研室意见: 年月日 学生(签字): 接受任务时间:2014 年12 月15 日

注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表题目名称具有自身阻滞作用的食饵—捕食者模型 评分项目分 值 得 分 评价内涵 选题15% 01 能结合所学课程知识,有 一定的能力训练。符合选 题要求 5 遵守各项纪律,工作刻苦努力,具有良好的科学 工作态度。 02 工作量适中,难易度合理10 通过实验、试验、查阅文献、深入生产实践等渠 道获取与课程设计有关的材料。 能力水平35% 04 综合运用知识的能力10 能运用所学知识和技能去发现与解决实际问题, 能正确处理实验数据,能对课题进行理论分析, 得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并 较好地论述课题的实施方案;有收集、加工各种 信息及获取新知识的能力。 06 设计(实验)能力,方案 的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、 操作等实验工作,数据正确、可靠;研究思路清 晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机 进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析 能力(综合分析能力、技 术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果质量45% 09 插图(或图纸)质量、篇 幅、设计(论文)规范化 程度 5 符合本专业相关规范或规定要求;规范化符合本 文件第五条要求。 10 设计说明书(论文)质量30 综述简练完整,有见解;立论正确,论述充分, 结论严谨合理;实验正确,分析处理科学。 11 创新10 对前人工作有改进或突破,或有独特见解。 成绩 指 导 教 师 评 语 指导教师签名:年月日

车灯线光源的优化设计——_02高教社杯全国大学生数学建模竞赛A题参考答案02A0

问题1:车灯线光源的计算 安装在汽车头部的车灯的形状为一旋转抛物面,车灯的对称轴水平地指向正前方,其开口半径36毫米,深度21.6毫米。经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置长度为4毫米的线光源,线光源均匀分布。在焦点F 正前方25米处的A 点放置一测试屏,屏与FA 垂直。 请解决下列问题: (1) 计算直射光总功率与反射光总功率之比。 (2) 计算测试屏上直射光的亮区,在有标尺的坐标系中画出其图形。 (3) 计算测试屏上反射光的亮区,在有标尺的坐标系中画出其图形(只须考虑一 次反射)。 解: 建立坐标系如下图,记线光源长度为l ,功率为W ,B,C 点的光强度分别为)(l h B W 和 )(l h C W ,先求)(l h B 和)(l h C 的表达式,再建立整个问题的数学模型. 以下均以毫米为单位,由所给信息不难求出车灯反射面方程为60 2 2y x z += ,焦点坐标为 (0,0,15)。 1) 位于点P(0,w,15)的单位能量的点光源反射到点C(0, 2600, 25015)的能量 设反射点的坐标为Q )60 , ,(2 2y x y x +.记入射向量为a ,该点反射面外法线方向为b ,不难得 到反射向量c 满足 .22b b b a a c ?-= 记2 22 y x r +=,由 ) 1,30/,30/(), 1560,,(2-=--=y x b r w y x a 从而得),,(z y x c c c c = 的表达式 ) 900(60810000 36001800900 ) 9002(900 22 2 4 22 2 2 ++-+= +--= += r wy r r c r r y w c r xyw c z y x 注意到反射光通过C 点,应有

数学建模

长江学院课程设计报告 课程设计题目:海岛服务中心的建设问题 姓名1:学号: 姓名2:学号: 姓名3:学号: 专业:材料成型 班级:083115 指导教师:黄雯 2010年11 月01日

海岛服务中心建设 摘要 本论文主要讨论了如何选择海岛服务中心,并使得其工作效率高,经济效益也高,成本低,利润大。选址问题是一种极其重要的长期决策,它的好坏直接影响到服务方式,服务质量,服务效率,服务成本,及才生利润。因此能影响到利润和市场竞争里,决定了企业的命运,甚至影响到本地的经济发展,所以选址问题的研究有着企业和经济发展的重要意义。 “在海岛上建一个服务中心为居民提供各种服务”数学模型是通过服务中心的建立来探讨建在那里比较合适,使得人数多的居民点希望距离近且到各居民点的距离最小。这是海岛服务中心选择地址问题,使得服务中心起的作用效率最大化,即到每个居民点的总时间最短,或者说到每个居民点的距离总和最短,从而经济效益高。在考虑居民点与服务中心之间为直线道路连通的情况下:由于海岛上的居民点比较分散和各居民点的人数也不一样的影响,利用数学知识联系实际问题,作出相应的解答和处理。并运用lingo软件编程和处理相关数据,从而得到最优决策方案。 该问题是一个非线性规划问题,我们首先建立单位目标的优化模型,也即模型一。根据题意得到了模型一的目标函数通过lingo软件的计算,从而使得总距离最短。 经过本小组成员之间的思考和讨论,得出了另一个优化模型,即模型二。根据题意得到了模型二的目标函数通过lingo软件的计算,从而使得总时间最短,效益也为最高。 关键词:服务中心居民点最佳路径方案效率高选地址

数学模型——教室照明灯布置

一、问题重述: 现代教育方式已由应试教育逐步向素质教育转变,借以培养学生的兴趣,增进师生之间的交流,营造良好的学习氛围。新的教育方式也对教师照明设计和规划提出了更高的要求。近些年又在倡导创建节约型社会,因此光源的选择需结合教室的通光条件已达到节能的目的。再者,教室光线分布的均匀程度及眩光作用也会影响学生的视觉效果,光线过强或过弱将导致视觉疲劳,从而影响课堂的学习效率。因此教室照明的设计显得尤为重要。 我们知道,白天上课学生的目光主要集中在黑板,而晚上自习时间则主要专注于书桌那一小范围区域。因此教室照明的设计必须考虑仔细和上课两种情况。晚自习主要考虑座位上方天花板上荧光灯的设计;白天上课主要考虑黑板照明的情况。 根据我国现行照度要求,教室的平均照度要求至少达到300勒克斯,教室黑板的照度要求达到500勒克斯(Lx)。(勒克斯是光照度的单位) 二、模型假设: 1.所有的荧光灯都是一样的,且都在同一水平面,灯到桌面的垂直距离都相等。 2.不考虑灯具的发光效率。 3.不考虑墙壁、窗户的反射作用。 4. 忽略荧光灯的宽度,把荧光灯看做是长度相等的线段。

5. 把教室的学生看做是理想化个体,不受情绪影响。 三、问题分析和模型建立: 相关参数如下: L:教室长度(12m) M:教室宽度(8m) H:灯距离课桌高度(2.8m) l1:荧光灯长度 l2:布灯纵向间距(2.1m) l3:布灯横向间距 (0.8m)Φ:光通量 U:利用系数 A:光照面积(L*M) K:灯具维护系数 Eav:光照度 照明节能:学校耗能主要来源于空调和照明,其中照明能耗占40% 左右,而教室照明占总照明耗能的80%。为达到节能的目的,选用T5 光源,直径只有16 毫米,节省了汞和荧光灯用量,同时节省了制灯 材料,有利于节能环保。 首先考虑晚上自习的情况: 利用系数法此方法考虑了由光源直接投射到工作面上的光通 量和经过室内表面相互反射再投射到工作面上的光通量。(仅适用于 均匀布灯,空间无大型设备阻挡的室内一般照明,教室满足利用系数 法的使用要求)由照度公式 Eav=NΦUK∕A,根据规范要求,平均照 度应达到300Lx(允许10%误差),已知光通量Φ为4800lm,面积A为 L*M=12×9=108m2,灯具维护系数K教室可取0.8,利用系数U,根据灯 具悬挂高度及墙面地面的材质情况,查阅灯具利用系数表,根据插值 法查取,U取0.6,则灯具个数N可推算出为12个,在12盏灯的情 况下,可计算平均照度Eav为288Lx,满足要求。 教室照明不仅要考虑平均照度,照明均匀度也至关重要。照明不

数学建模课程设计论文

数学建模课程设计 题目:最佳捕鱼方案 第九组:组员一组员二组员三 姓名:崔健萍王晓琳吴晓潇 学号: 021340712 021341009 021341014 专业:数学与应用数学数学与应用数学数学与应用数学成绩: 湖北民族学院理学院 二零一五年五月三十一日

最佳捕鱼方案问题 摘要 捕鱼方案问题在实际生活中应用广泛,如何捕鱼投放市场效益最佳这是一个一直需要讨论的问题。 本文通过建立一个数学模型的方式把捕鱼方案问题这种实际问题转化为数学模型的方式进行解答。 在本文中,首先我们对于这个问题进行了分析假设,排除了一些实际生活中不可避免但是我们又无法预计的实际情况,然后对本题进行了分析,选择了最合适的建模方式。在已知鱼的总量、水位、水位随时间的变化关系、鱼损失的变化率随水位的变化关系、捕鱼成本随水位的变化关系及不同供应量时鱼的价格的情况如下,要求下面几个问题: 问题一:建立草鱼的销售收益随供应量变化的函数关系,主要是考虑当随捕鱼量取不同值时,鱼的价格,然后再把其联系在一块,做出其函数关系。 问题二:建立草鱼的捕捞成本随时间变化的函数关系,由于是自然放水,所以水的深度和时间是一个一次函数的关系,但水的深度降低时,捕捞成本越来越低,并且降低的速度越来越快。经过一系列的模型建立与求解最终得出捕捞成本随时间的函数关系。 问题三:当水位下降时捕鱼的损失率会越来越大,并且其损失率会加速增大,据查询的可靠资料,最后得出水位和损失率的关系跟反函数图像最接近,最后就采用以水位为自变量,损失率为因变量建立模型,最终得出其函数模型,然后再联系水位与时间的关系,最终可以得出草鱼的损失率与时间变化的函数关系。问题四:为取得最大的总经济效益,保证在放水的过程中,每一天都达到了最大的经济效益,其中要考虑到捕鱼成本随水深的变化和损失率随水深的变化,同时水深又是随时间的变化,建立相应的目标规划模型。 关键词:0-1变量规划问题多目标 LINGO

数学建模常见问题

1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归); 2 归类判别:欧氏距离判别、fisher判别等; 3 图论:最短路径求法; 4 最优化:列方程组用lindo 或lingo软件解; 5 其他方法:层次分析法马尔可夫链主成分析法等; 6 用到软件:matlab lindo (lingo)excel ; 7 比赛前写几篇数模论文。 这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧…… 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B 工交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划

营销策略数学建模

课程设计: 营销生产策略的制定 指导老师:韩曙光 学生学号:2011326630118 学生姓名:李泽伟 2014年6月19日星期四

目录 营销生产策略的制定 (2) 姓名:李泽伟(2011326630118) (2) 时间:2014年6月19日 (2) 摘要 (2) 一.问题分析与解题思路 (3) 二.模型假设与变量说明 (3) A.模型假设 (3) B.变量说明 (4) 三.解答过程与结果 (4) 1、问题一 (4) 2、问题二 (6) 3、问题三 (7) 四.测试与检验结果 (8) 1、问题一 (8) 2、问题二 (9) 3、问题三 (10) 五.模型的评价与改进 (10) 对问题一的模型改进 (10) 对问题二的模型改进 (11) 对问题三的模型改进 (11) 模型评价 (11) 六.参考文献及相关资料 (12) 七.附录 (12) 问题一的程序 (12) 问题二的程序 (13) 问题三的程序 (15)

营销生产策略的制定 姓名:李泽伟(2011326630118) 时间:2014年6月19日 摘要 产品销售问题是经济应用数学的一个应用领域,本文主要运用了Frank M.Bass建立的Bass模型建立模型,利用Matlab软件进行模拟求解,得出在不同情况下,新产品的营销生产策略。 问题一中,在假设外在因素相对稳定的前提下,将消费者分成了创新采用者和模仿采用者,通过建立模型并作图,了解到:新产品进入市场的需求曲线呈“S”型,一开始增长,达到一定时间后在最大市场需求量趋于稳定,达到稳定的时间和对外影响因素,对内模仿因素有关,在一定范围内,对外影响因素、对内模仿因素越大,达到平衡所用的时间就越短。 问题二中,由于有了类似产品的竞争,在BASS模型的基础上建立了产品竞争模型,通过各个变量的变化比较得出,由于A产品和B产品类似,所以他们的内部模仿因素相同,所以外部影响因素对A产品所占市场份额受起到了举足轻重的作用,在一定范围内,公司通过加大广告媒体试用品、赠品等的宣传力度,才能够使得A产品的销售更多。 问题三种,考虑到产品的寿命,所以做出的模型比较复杂,通过观察图像可以得出,产品的寿命对产品的销售影响也是不确定的。 本文还分别对问题一、问题二、问题三中的模型进行了改进和优化,最后对Bass模型进行了评价。 关键词:Bass模型 Matlab编程外部影响因素内部模仿因素产品寿命

相关文档
最新文档