高一数学必修一函数专题:定义域

合集下载

必修一专题复习高一数学(讲义2)求函数的定义域

必修一专题复习高一数学(讲义2)求函数的定义域

必修一专题复习高一数学(讲义2)复习范围:必修1 第一章——第三章第一章 集合与函数的概念(2)求函数的定义域知识点1:函数定义域 常见函数定义域的求法例1函数y =log 2(x -12-x的定义域为________.变式1:求下列函数的定义域: (1)f (x )=1x +2; (2)f (x )=3x +2; (3)f (x )=x +1+13-x .知识点2:复合函数的定义域口诀:f 后整体范围一致;定义域为自变量x 的取值范围。

例2、设函数)(x f 的定义域是[0,2],求 ①|)12(|-x f ;②)1()1(-++x f x f 的定义域.知识点:不等式0>a(1)a x a a x <<-⇔<; (1)a x a a x <<-⇔<2;(2)a x a x a x >-<⇔>或; (2)a x a x a x >-<⇔>或2;(3)a b x a a b x <+<-⇔<+; (3)a b x a a b x <+<-⇔<+2)(;(4)a b x a b x a b x >+-<+⇔>+或;(4)a b x a b x a b x >+-<+⇔>+或2)(;变式1:设函数()f x 的定义域为[]1,1-,则函数1()2x g x f f x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭的定义域是_____________.例3、已知函数)12(+=x f y 的定义域是[0,1],求函数)(x f y =的定义域。

例4、已知(1)y f x =+的定义域为 []23-,,求函数(21)y f x =-的定义域。

变式1:已知函数(1)f x +的定义域为122⎛⎫- ⎪⎝⎭,,求2()f x 的定义域变式2:已知函数(21)f x -的定义域为[)01,,求(13)f x -的定义域.变式3:已知函数f (2x -1)的定义域为[1,4],则函数f (2x )的定义域为____________.变式4:若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1)。

高一数学 函数的定义域和值域教案必修一

高一数学 函数的定义域和值域教案必修一

诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。

(2)掌握两个函数是同一函数的条件。

(3)会求简单函数的定义域和值域。

过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。

(2)使学生掌握求函数是=式的值得方法。

(3)培养批判思维才能、自我调控才能、交流与才能。

情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。

(2)学会全面的观察、分析、研究问题。

重点难点
重点:符号“y=f(x)〞的含义。

难点:符号“y=f(x)〞的含义。

教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。

苏教版高一数学必修一函数定义域和值域

苏教版高一数学必修一函数定义域和值域
练习:
1.已知 ,求 。
2、已知 是一次函数,且 ,求 的解析式。
3、设 是R上的函数,且满足 ,并且对任意实数 ,有 ,求 的表达式。
4、求函数 的值域。
5、单调性:
例1.证明: 在 上是减函数。(定义法)
2.证明:函数 在 上是减函数
例2.画出函数 的图像,并由图像写出函数 的单调区间。
3、复合函数
7.理解掌握判断函数的奇偶性的方法
了解映射的定义,明确函数与映射的异同之处
教学内容
1.函数概念是如何定义的,什么是映射?举例说明函数、映射以及它们之间的区别
2.思考:对于不同的函数如:① ② ③ ④ ⑤
的定义域如何确定
3.通常表示函数的方法有:
4. 的定义域为 。函数是增函数,函数是减函数,
函数是奇函数,函数是偶函数。
例1、求下列函数的值域:(观察法)
(1) (2)
例2.求函数 的值域(反解法)
例3.求函数 的值域(配方换元法)
例4.求函数 的值域(不等式法)
例5.画出函数 的图像,并根据其图像写出该函数的值域。(图像法)
练习:
1.求下列函数的值域:
(1) (2)
(3) (4)
2.求下列函数的值域:
(1) (2) (3)
讲授新课:
1、函数的判断
例1.<1>下列对应是函数的是
注:检验函数的方法(对于定义域内每一值值域内是否存在唯一的值与它对应)
① ②
<2>下列函数中,表示同一个函数的是:( )
注:定义和对应法则必须都相同时,函数是同一函数
A. B.
C. D.
练习:
1.设有函数组:① ② ③ ④

高一数学函数专题(含答案)

高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

高中数学必修一 专题三 函数的定义域和值域(含详解)

高中数学必修一 专题三 函数的定义域和值域(含详解)

专题三函数的定义域和值域一.选择题(共12小题)1.函数的定义域是()A.(﹣1,+∞)B.(﹣1,1)∪(1,+∞) C.[﹣1,+∞)D.[﹣1,1)∪(1,+∞)2.已知函数f(x)=的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2) B.(1,4) C.R D.(﹣,﹣1)∪(1,)3.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤4.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.B.f:x→y=2﹣x C.D.5.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.6.下列函数与函数y=x相等的是()A.B.C.D.7.如图所示,可表示函数图象的是()A.①B.②③④C.①③④D.②8.下列四组函数,表示同一函数的是()A.,g(x)=xB.C.D.f(x)=|x+1|,g(x)=9.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是()A.B.(﹣∞,0]C.[1,+∞)D.R10.若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)11.二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为()A.[﹣2,6]B.[﹣3,+∞)C.[﹣3,6]D.[﹣3,﹣2]12.若函数的定义域、值域都是[2,2b],则()A.b=2 B.b∈[1,2]C.b∈(1,2)D.b=1或b=2二.填空题(共4小题)13.函数f(x)=的定义域为,值域为.14.函数的定义域是.15.函数y=的定义域为R,则k的取值范围.16.函数的值域为.三.解答题(共6小题)17.求下列函数的定义域:(1);(2).18.已知函数f(x)=(1)求f(1)+f(2)+f(3)+f()+f()的值;(2)求f(x)的值域.19.已知函数y=的定义域为R,求实数m的取值范围.20.当x>0时,求函数的值域.21.已知函数,(1)求函数的定义域;(2)求的值.22.求函数f(x)=x2+|x﹣2|,x∈[0,4]的值域.专题三(2)函数的概念参考答案与试题解析一.选择题(共12小题)1.函数的定义域是()A.(﹣1,+∞)B.(﹣1,1)∪(1,+∞) C.[﹣1,+∞)D.[﹣1,1)∪(1,+∞)【分析】由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组求解.【解答】解:由,解得x≥﹣1且x≠1.∴函数的定义域是[﹣1,1)∪(1,+∞).故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2.已知函数f(x)=的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2) B.(1,4) C.R D.(﹣,﹣1)∪(1,)【分析】由已知函数的定义域可得1<x2<2,求解不等式组得答案.【解答】解:∵数f(x)=的定义域为(1,2),∴由1<x2<2,得﹣<x<﹣1或1<x<.即函数f(x2)的定义域是(﹣,﹣1)∪(1,).故选:D.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.3.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤【分析】由函数f(x)=的定义域是R,表示函数的分母恒不为零,即方程ax2+ax﹣3=0无解,根据一元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.【解答】解:由a=0或可得﹣12<a≤0,故选:B.【点评】求函数的定义域时要注意:(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f 下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.4.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.B.f:x→y=2﹣x C.D.【分析】根据函数的定义分别进行判断即可.【解答】解:C的对应法则是f:x→y=x,可得f(4)=∉B,不满足映射的定义,故C的对应法则不能构成映射.故C的对应f中不能构成A到B的映射.故选:C.【点评】本题给出集合A、B,要求我们找出从A到B的映射的个数,着重考查了映射的定义及其判断的知识,属于基础题.5.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.【分析】利用函数定义,根据x取值的任意性,以及y的唯一性分别进行判断.【解答】解:B中,当x>0时,y有两个值和x对应,不满足函数y的唯一性,A,C,D满足函数的定义,故选:B.【点评】本题主要考查函数的定义的应用,根据函数的定义和性质是解决本题的关键.6.下列函数与函数y=x相等的是()A.B.C.D.【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和已知函数一致即可.【解答】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,y=|x|,对应关系不一致.C.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7.如图所示,可表示函数图象的是()A.①B.②③④C.①③④D.②【分析】利用函数的定义分别对四个图象进行判断.【解答】解:由函数的定义可知,对定义域内的任何一个变化x,在有唯一的一个变量y与x对应.则由定义可知①③④,满足函数定义.但②不满足,因为②图象中,当x>0时,一个x对应着两个y,所以不满足函数取值的唯一性.所以不能表示为函数图象的是②.故选:C.【点评】本题主要考查了函数的定义以及函数的应用.要求了解,对于一对一,多对一是函数关系,一对多不是函数关系.8.下列四组函数,表示同一函数的是()A.,g(x)=xB.C.D.f(x)=|x+1|,g(x)=【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.【解答】解:对于A,f(x)==|x|,与g(x)=x的对应关系不同,∴不是同一函数;对于B,f(x)=(x≥2或x≤﹣2),与g(x)==(x≥2)的定义域不同,∴不是同一函数;对于C,f(x)=x(x∈R),与g(x)==x(x≠0)的定义域不同,∴不是同一对于D,f(x)=|x+1|=,与g(x)=的定义域相同,对应关系也相同,是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是()A.B.(﹣∞,0]C.[1,+∞)D.R【分析】直接由已知函数解析式求得函数值得答案.【解答】解:f(x)=,x∈{1,2,3},当x=1时,f(1)=1;当x=2时,f(2)=;当x=3时,f(3)=.∴函数f(x)的值域是.故选:A.【点评】本题考查函数值域的求法,是基础的计算题.10.若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【分析】由题意:函数y是一个复合函数,值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0.即最小值要小于等于0.【解答】解:由题意:函数y=是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:⇒解得:a≥3所以a的取值范围是[3,+∞).故选:B.【点评】本题考查了复合函数的值域的求法,通过值域来求参数的问题.属于基11.二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为()A.[﹣2,6]B.[﹣3,+∞)C.[﹣3,6]D.[﹣3,﹣2]【分析】利用二次函数的单调性即可求解值域.【解答】解:函数f(x)=x2﹣4x+1,其对称轴x=2,开口向上,∵x∈[3,5],∴函数f(x)在[3,5]单调递增,当x=3时,f(x)取得最小值为﹣2.当x=5时,f(x)取得最小值为6∴二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为[﹣2,6].故选:A.【点评】本题考查二次函数的单调性求解最值问题,属于函数函数性质应用题,较容易.12.若函数的定义域、值域都是[2,2b],则()A.b=2 B.b∈[1,2]C.b∈(1,2)D.b=1或b=2【分析】根据二次函数的性质建立关系解得b的值.【解答】解:函数其对称轴x=2,∴函数f(x)在定义域[2,2b]是递增函数,且2b>2,即b>1.那么:f(2b)=2b即2b=﹣4b+4解得:b=2故选:A.【点评】本题考查了定义域、值域的关系,利用二次函数的性质,属于基础题.二.填空题(共4小题)13.函数f(x)=的定义域为[﹣3,1] ,值域为[0,2] .【分析】根据函数的定义域和值域的定义进行求解即可.【解答】解:要使函数有意义,则3﹣2x﹣x2≥0,即x2+2x﹣3≤0,解得﹣3≤x≤1,故函数的定义域为[﹣3,1],设t=3﹣2x﹣x2,则t=3﹣2x﹣x2=﹣(x+1)2+4,则0≤t≤4,即0≤≤2,即函数的值域为[0,2],故答案为:[﹣3,1],[0,2]【点评】本题主要考查函数定义域和值域的求解,利用换元法结合一元二次函数的性质是解决本题的关键.14.函数的定义域是[﹣3,1] .【分析】根据使函数的解析式有意义的原则,结合偶次根式的被开方数必须不小于0,我们可以构造关于自变量x的不等式组,解不等式组,可得答案.【解答】解:要使函数的解析式有意义自变量x须满足解得﹣3≤x≤1即函数的定义域是[﹣3,1]故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域及其求法,其中列出满足条件的不等式组,是解答本题的关键.15.函数y=的定义域为R,则k的取值范围[0,2] .【分析】把函数y=的定义域为R转化为kx2﹣4kx+6≥0对任意x∈R恒成立.然后对k分类求解得答案.【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].【点评】本题考查函数的定义域及其求法,考查数学转化思想方法,是中档题.16.函数的值域为.【分析】令(t≥0),得x=﹣t2+1,把原函数转化为关于t的一元二次函数求解.【解答】解:令(t≥0),得x=﹣t2+1,∴原函数化为y=.∴数的值域为:.故答案为:.【点评】本题考查函数值域的求法,训练了利用换元法求函数的值域,是中档题.三.解答题(共6小题)17.求下列函数的定义域:(1);(2).【分析】(1)由二次根式的意义可知:(2)由二次根式和分式的意义可知:,分别解不等式组可得答案.【解答】解:(1)由二次根式的意义可知:,∴定义域为[﹣8,3].(2)由二次根式和分式的意义可知:∴定义域为{﹣1}.故答案为:(1)定义域为[﹣8,3],(2)定义域为{﹣1}.【点评】本题为函数定义域的求解,使式子有意义,化为不等式组是解决问题的关键,属基础题.18.已知函数f(x)=(1)求f(1)+f(2)+f(3)+f()+f()的值;(2)求f(x)的值域.【分析】(1)直接根据函数解析式求函数值即可.(2)根据x2的范围可得1+x2的范围,再求其倒数的范围,即为所求.【解答】解:(1)原式=++=.(2)∵1+x2≥1,∴≤1,即f(x)的值域为(0,1].【点评】本题考查了函数的值与函数的值域的求法,可怜虫推理能力与计算能力,属于中档题.19.已知函数y=的定义域为R,求实数m的取值范围.【分析】根据题意,一元二次不等式x2+6mx+m+8≥0恒成立;△≤0,求解集即可.【解答】解:函数y=的定义域为R,∴x2+6mx+m+8≥0恒成立;∴△=36m2﹣4(m+8)≤0,整理得9m2﹣m﹣8≤0,解得﹣≤m≤1,∴实数m的取值范围是﹣≤m≤1.【点评】本题考查了一元二次不等式恒成立的应用问题,是基础题.20.当x>0时,求函数的值域.【分析】利用分离常数法,结合基本不等式即可求解值域;【解答】解:∵x>0,x+1>0∴函数===2(当且仅当x=时取等号)故得原式函数的值域为[,+∞).【点评】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.21.已知函数,(1)求函数的定义域;(2)求的值.【分析】(1)根据分式及偶次根式成立的条件可得,,解不等式可求函数的定义域(2)直接把x=﹣3,x=代入到函数解析式中可求【解答】解:(1)由题意可得,解不等式可得,{x|x≥﹣3且x≠﹣2}故函数的定义域,{x|x≥﹣3且x≠﹣2}(2)f(﹣3)=﹣1,f()=【点评】本题主要考查了函数的定义域的求解,函数值的求解,属于基础试题22.求函数f(x)=x2+|x﹣2|,x∈[0,4]的值域.【分析】去掉绝对值,得到两段函数,并对每段函数配方即可求出该段的函数f (x)的范围,对两段上求得的f(x)求并集即可求得f(x)的值域.【解答】解:f(x)=;∴当x∈[0,2]时,当x∈(2,4]时,f(x)∈(4,18]综上,即函数f(x)的值域为.【点评】考查求函绝对值函数的值域的求法,以及配方法求二次函数的值域.。

高一数学必修1复合函数定义域的求法

高一数学必修1复合函数定义域的求法

解:
由y

k
x2
kx 7 4kx

3
的定义域为一切实数, 可知
分母kx2 4kx 3 0对x R恒成立
(1)当K=0时, 3≠0成立
(2)当K 0时 : 0,解得: 0 k 3 4
综上(1),(2)知,当0 k 3 时 4
y

Байду номын сангаас
kx 7 的定义域是一切实数 kx2 4kx 3
复合函数求定义域的几种题型:
题型(一):已知f (x)的定义域,求f [g(x)]的定义域
例1.若f (x)的定义域是[0,2],求f (2x 1)的定义域
解: 由题意知:
0 2x 1 2
1 x 3
2
2
故 : f (2x 1)的定义域是{x 1 x 3}
2
2
练习:若f (x)的定义域是0,2,求f (x2)的定义域
1.已知函数f (x)的定义域是[2, 2],求y f x 的定义域
题型(二):已知f g x的定义域,求f (x)的定义域
例2:已知f 2x 1的定义域(1,5],求f (x)的定义域
解: 由题意知:
1 x 5
3 2x 1 9
f (x)的定义域为 3,9
练习: 若函数 y ax2 ax 1 的定义域是R,
求实数a 的取值范围。
练习: 若函数 y ax2 ax 1 的定义域是R,
求实数a 的取值范围。
解:∵定义域是R, ax2 ax 1 0恒成立,
当 a 0 时,显然适合题意.

a

0

高中数学必修一定义域与值域(超全的方法)

高中数学必修一定义域与值域(超全的方法)

高中数学精英讲解——函数(概念理解以及定义域) 【第一部分】知识复习【第二部分】典例讲解考点一:函数得定义域1)已知解析式,求定义域例1、写出下列函数定义域(1)得定义域为___________;(2)得定义域为______________;(3)得定义域为____________(4)得定义域为_________________.例2.函数得定义域为_____________________.例3.若函数得定义域为R,则实数得取值范围__________.变式1、函数得定义域就是()A.(,)B.(,) C.(,1) D.(,)变式2、求得定义域2)求抽象函数得定义域例1、已知函数定义域就是,则得定义域就是( )A. B、C、 D、例2.设函数得定义域为,则函数得定义域为__________。

变式1、已知函数得定义域为[0,4],求函数得定义域( )A.B. C.D.变式2、已知集合,,则____考点二:函数得解析式1)换元法,配凑法,求解析式例1、、已知,求得解析式.变式1、(1)已知,求及;(2)已知,求、2)已知解析式形式,求解析式例1、已知()就是一次函数,且满足,求;例2、已知二次函数得最小值等于4,且,求得解析式.变式1设二次函数满足(+2)=(2-),且方程得两实根得平方与为10, 得图象过点(0,3),求()得解析式、3)求抽象函数得解析式例.已知 ( 0), 求.变式1.设(x-1)=3x-1,则(x)=___________________________.考点三:抽象函数例.设函数对任意x、y满足,且,则=____A.-2B.±C.±1 ﻩD.2变式.函数对于任意实数满足条件,若,求.考点四:分段函数例1.若函数,则= .例2已知函数若则实数得取值范围( )A B C D例3、已知函数若,则、例4若函数则不等式得解集为____________、例5.已知则不等式≤5得解集就是_________变式1、若函数,则____________________变式2、函数则实数a得取值范围就是________________变式3、定义在R上得函数f(x)= ,则f(3)=( )A、-1 B、-2 C、1 D、 2考点五:函数概念得应用例.判断下列各组中得两个函数就是同一函数得为( )⑴,;⑵,;⑶,;⑷,;⑸,。

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。

函数值的集合{f(x│x∈A}叫做函数的值域。

(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。

②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。

3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。

(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。

2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。

3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。

常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。

(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。

高中数学必修一定义域与值域(超全的方法!)

高中数学必修一定义域与值域(超全的方法!)

高中数学精英讲解——函数(概念理解以及定义域)令狐采学【第一部分】知识复习【第二部分】典例讲解考点一:函数的定义域1)已知解析式,求定义域例1.写出下列函数定义域_________________________;_____________________________.例2例3R围变式1.AB. C.1) D.变式2.2)求抽象函数的定义域例1.是()A例2__________[0,4]变式1.的定义域()A变式2.考点二:函数的解析式1)换元法,配凑法,求解析式例1..变式1.(1(22)已知解析式形式,求解析式例1.例2.4变式1 设二次函数()f x 满足f (x +2)=f (2-x ),且方程()0f x =的两实根的平方和为10,)(x f 的图象过点(0,3),求f (x )的解析式. 3)求抽象函数的解析式例.已知[]221)(,21)(x x x g f x x g -=-= (x0),求)21(f .变式1.设f (x -1)=3x-1,则f (x)=___________________________.例.设函数()f x 对任意x 、y 满足()()()f x y f x f y +=+,且(2)4f =,则(1)f -=____A .-2B .±21 C .±1D .2变式.函数()f x 对于任意实数x 满足条件1(2)()f x f x +=,若(1)5f =-,求((5))f f .考点四:分段函数 例1.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f =. 例2已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取A (,1)(2,)-∞-⋃+∞B (1,2)-C (2,1)-D (,2)(1,)-∞-⋃+∞ 例3.已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x =. 例4若函数1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩则不等式1|()|3f x ≥的解集为例5的解集是变式2.a 的取值范围是变式3.定义在R 上的函数f(3)=()A.-1 B. -2 C.1 D. 2考点五:函数概念的应用例.判断下列各组中的两个函数是同一函数的为()变式1.A .B .C .D .。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

(完整版)高一必修一数学-复合函数定义域

(完整版)高一必修一数学-复合函数定义域

复合函数的定义域讲解内容:复合函数的定义域求法讲解步骤:第一步:函数概念及其定义域函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。

其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值.第二步:复合函数的定义一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22(())3()53(1)538f g x g x x x =+=++=+问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。

)第三步:介绍复合函数的定义域求法例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域;解:由题意得35x -<≤Q3325x ∴-<-≤ 137x -<≤1733x ∴-<≤ 所以函数(32)f x -的定义域为17,33⎛⎤- ⎥⎝⎦. 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。

解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即⎩⎨⎧≤≤->-<⇔⎪⎩⎪⎨⎧≤+>+⇔≤+<13023202320222x x x x x x x x x ,或即23-<≤-x 或10≤<x故)2(2x x f +的定义域为[)(]1,02,3Y -- 例2. 若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域解:由题意得23x ∴-≤≤639x ∴-≤≤42311x ∴-≤+≤所以函数()f x 的定义域为:[]4,11-例3. 已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。

(word完整版)高一数学必修一函数专题

(word完整版)高一数学必修一函数专题

高一数学必修一函数专题(教师版)一.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称•(2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):①定义法;f(x) f( x) 0②利用函数奇偶性定义的等价形式:f( x) 1( f(x) 0).f (x)③图像法:奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(3)函数奇偶性的性质:①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反•②若f (x)为偶函数,贝U f( x) f (x) f (| x |).③若奇函数f(x)定义域中含有0,则必有f(0) 0.④奇函数的图象关于原点对称;偶函数的图象关于y轴对称.二.函数的单调性1. 函数单调性的定义:(1)如果函数f x对区间D内的任意x-! ,x2,当x1 x2时都有f % f x2,则f x在D内是增函数;当x1 x2时都有f为f x2,则f x在D内是减函数.(2)设函数y f (x)在某区间D内可导,若f X 0,则y f (x)在D内是增函数;若f x 0,则y f (x)在D内是减函数.2•单调性的定义的等价形式:(1)设x1 ,x2 a,b,那么匚勺——^-x^ 0 f x在a,b上是增函数;x1 x2(2) --------------------------------------- 设x1 ,x2 a,b,那么f x2 0 f x 在a,b 上是减函数;x1 x23.证明或判断函数单调性的方法:(1) 定义法:设元作差变形判断符号给出结论•其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘积、平方和等形式,再结合变量的范围,假设的两个变量的大小关系及不等式的性质作出判断;⑵复合函数单调性的判断方法:即“同增异减”法,即内层函数和外层函数的单调性相同,则复合函数为增函数;若相反,则复合函数为减函数•解决问题的关键是区分好内外层函数,掌握常用基本函数的单调性;(3)图象法:利用数形结合思想,画出函数的草图,直接得到函数的单调性;(4)导数法:利用导函数的正负来确定原函数的单调性,是最常用的方法.(5)利用常用结论判断:①奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;②互为反函数的两个函数具有相同的单调性;③在公共定义域内,增函数f(x)增函数g(x)是增函数;减函数f(x)减函数g(x)是减函数;增函数f (x)减函数g(x)是增函数;减函数f (x)增函数g(x)是减函数;④复合函数法:复合函数单调性的特点是同增异减,特别提醒:求单调区间时,勿忘定义域,三.函数的周期性.(1)类比“三角函数图像”得:①若y f (x)图像有两条对称轴x a,x b(a b),则y f (x)必是周期函数,且一周期为T 2|a b| ;②若y f (x)图像有两个对称中心A(a,O), B(b,O)(a b),则y f(x)是周期函数,且一周期为T 2|a b| ;③如果函数y f (x)的图像有一个对称中心A(a,O)和一条对称轴x b(a b),则函数y f(x)必是周期函数,且一周期为T 4|a b| ;(2)由周期函数的定义“函数f(x)满足f x f a x (a 0),则f(x)是周期为a的周期函数”得:函数f (x)满足 f x f a x,则f(x)是周期为2a的周期函数。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知(1)若,求x的范围;(2)求的最大值以及此时x的值.【答案】(1)(2),.【解析】(1)根据向量的数量积公式,化简f(x)≥1得cos2x-cosx≤0,从而得到0≤cosx≤1.再由余弦函数的图象与性质解此不等式,即可求出x的范围;(2)由(1)得f(x)=sin2x+cosx,利用同角三角函数的关系化简、配方得f(x)═,由此可得cosx=时,f(x)的最大值为,根据余弦函数的图象与性质,可得相应x的值..试题解析:解:(1),(2)【考点】1.平面向量数量积的运算;2.正弦函数的定义域和值域.2.注:此题选A题考生做①②小题,选B题考生做①③小题.已知函数是定义在R上的奇函数,且当时有.①求的解析式;②(选A题考生做)求的值域;③(选B题考生做)若,求的取值范围.【答案】①;②;③【解析】①当时,,根据可推导出时的解析式。

注意最后将此函数写成分段函数的形式。

②本题属用分离常数项法求函数值域。

当时将按分离常数项法将此函数化为,根据自变量的范围可推导出函数值的范围,因为此函数为奇函数所以值域也对称。

故可得出的值域。

③本题属用单调性“知二求一”解不等式问题。

所以应先判断此函数的单调性。

同②当时将化为,可知在上是增函数,因为为奇函数,所以在上是增函数。

根据单调性得两自变量的不等式,即可求得的取值范围。

试题解析:解:①∵当时有∴当时,∴∴()∴(6分)②∵当时有∴又∵是奇函数∴当时∴(A:13分)③∵当时有∴在上是增函数,又∵是奇函数∴是在上是增函数,(B:13分)∵∴∴【考点】函数的奇偶性及值域,函数的单调性。

考查转化思想。

3.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.4.已知则_ .【答案】7【解析】因为,所以代入,即,因为,所以代入,得,故得.【考点】分段函数及解析式.5.给出以下命题:①若、均为第一象限角,且,且;②若函数的最小正周期是,则;③函数是奇函数;④函数的周期是;⑤函数的值域是.其中正确命题的个数为()A.3B.2C.1D.0【答案】D【解析】对于①来说,取,均为第一象限,而,故;对于②,由三角函数的最小正周期公式;对于③,该函数的定义域为,定义域不关于原点对称,没有奇偶性;对于④,记,若,则有,而,,显然不相等;对于⑤,,而当时,,故函数的值域为;综上可知①②③④⑤均错误,故选D.【考点】1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域.6.函数的定义域为.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于07.若函数()在上的最大值为23,求a的值.【答案】或【解析】利用整体思想令,则,其图像开口向上且对称轴为,所以二次函数在上单调递减,在上是增函数.下面分两种情况讨论:当时,在R上单调递减,当时是的增区间,所以时y取最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题二:已知:函数 f (x) (2x2 5x 2)0 。计算:函数 f (x) 的定义域。
解答:根据一个式子的零次方,这个式子不等于零得到: 2x2 5x 2 0 x 2 且 x 1 。 2
所以:函数 f (x) 的定义域: x (, 1 ) ( 1 ,2) (2,) 。 22
x2 2x 3 0 代表 x 轴下方的图像 x (,1) (3,) 。 (Ⅲ)二次函数 y 2x2 2x 1开口向上, (2)2 4 2 1 4 8 4 0 与 x 轴无交点。如下图所示:
2x2 2x 1 0 代表 x 轴上方和 x 轴上的图像 x R 。 (Ⅳ)二次函数 y x2 3x 4 开口向下, 32 4 (1) (4) 9 16 7 0 与 x 轴无交点。
第二部分:不等式解法
第一种不等式:一元一次不等式
例题:解下列一元一次不等式。
(Ⅰ) 2x 1 0
(Ⅱ) 2 3x 0
解答:(Ⅰ) 2x 1 0 2x 1 x 1 。 2
(Ⅱ) 2 3x 0 3x 2 x 2 。 3
(Ⅲ) 1 x 3 x 3 (2) x 6 。 2
x2 2x 0 代表 x 轴上方图像 x: x (0,2) 。
限制条件四:一个式子的零次方,这个式子不等于零
例题一:已知:函数 f (x) (x 2)0 。计算:函数 f (x) 的定义域。
解答:根据一个式子的零次方,这个式子不等于零得到: x 2 0 x 2 x 2 。 所以:函数 f (x) 的定义域: x (,2) (2,) 。
例题二:已知:函数
f
(x)
1 x 2x 1
。计算:函数
f
(x)
的定义域。
解答:根据分母不等于零得到: 2x 1 0 2x 1 ,1 20 2x 20 x 0 。
所以:函数 f (x) 的定义域: x (,0) (0,) 。
限制条件二:根号下大于等于零
例题一:已知:函数 f (x) 1 x 。计算:函数 f (x) 的定义域。 解答:根据根号下大于等于零得到:1 x 0 x 1 x 1 。 所以:函数 f (x) 的定义域: x (,1] 。
2x24x 2 0 代表 x 轴下方的图像 x 1 x (,1) (1,) 。
第三种不等式:绝对值不等式
例题:解下列绝对值不等式。
(Ⅰ)| 2x 1| 3
(Ⅱ)| x2 2x | 3
与 x 轴的交点:令 x2 3x 0 x(x 3) 0 x1 0 , x2 3。如下图所示:
x2 3x 0 代表 x 轴上方和 x 轴上的图像 x (,0] [3,) 。 (Ⅱ)二次函数 y x2 2x 3 开口向下, 22 4 (1) 3 4 12 16 0 。 与 x 轴的交点:令 x2 2x 3 0 x1 3 , x2 1 。如下图所示:
x2 x 2 0 代表 x 轴上方和 x 轴上的图像 x (,1] [2,) 。 所以:函数 f (x) 的定义域: x (,1] [2,) 。
限制条件三:对数的真数大于零
例题一:已知:函数 f (x) ln(1 2x) 。计算:函数 f (x) 的定义域。 解答:根据对数的真数大于零得到:1 2x 0 2x 1 x 1 。
例题二:已知:函数 f (x) x2 x 2 。计算:函数 f (x) 的定义域。 解答:根据根号下大于等于零得到: x2 x 2 0 。 二次函数: y x2 x 2 开口向上,判别式: (1)2 4 1 (2) 1 8 9 0 。 与 x 轴的交点:令 y 0 x2 x 2 0 x1 1, x2 2 。如下图所示:
高一数学必修一函数专题:定义域
第一部分:已知函数解析式,求定义域的限制条件
限制条件一:分母不等于零
例题一:已知:函数
f
(x)
3x 2 2x 1
。计算:函数
f
(x)
的定义域。
解答:根据分母不等于零得到: 2x 1 0 2x 1 x 1 。 2
所以:函数 f (x) 的定义域: x (, 1 ) ( 1 ,) 。 22
如下图所示:
x2 3x 4 0 代表 x 轴上方的图像 x 。
第3页共6页
(Ⅴ)二次函数 y x2 2x 1开口向上,判别式 (2)2 4 11 0 与 x 轴有一个交点。 与 x 轴的交点:令 y 0 x2 2x 1 0 x 1。如下图所示:
x2 2x 1 0 代表 x 轴下方和 x 轴上的图像 x 1 。 (Ⅵ)二次函数 y 2x24x 2 开口向下, 42 4 (2) (2) 16 16 0 与 x 轴只有一个交点。 令 y 0 2x2 4x 2 0 x 1。如下图所示:
2 所以:函数 f (x) 的定义域: x (, 1 ) 。
2
第1页共6页
例题二:已知:函数 f (x) log2 (x2 2x) 。计算:函数 f (x) 的定义域。 解答:根据对数真数大于零得到: x2 2x 0 。 二次函数 y x2 2x 开口向下,判别式 22 4 (1) 0 4 0 。 与 x 轴交点:令 y 0 x2 2x 0 x(x 2) 0 x1 0 , x2 2 。如下图所示:
第二种不等式:一元二次不等式
(Ⅲ) 1 x 3 2
例题:解下列一元二次不等式。
(Ⅰ) x2 3x 0
(Ⅱ) x2 2x 3 0
(Ⅲ) 2x2 2x 1 0
第2页共6页
(Ⅳ) x2 3x 4 0 (Ⅴ) x2 2x 1 0
(Ⅵ) 2x24x 2 0
解答:(Ⅰ)二次函数 y x2 3x 开口向上,判别式 (3)2 4 1 0 9 0 。
相关文档
最新文档