统计学第八章时间数列44页PPT文档

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编制方法和原则
➢总体范围应一致 ➢指标内容应相同 ➢时期数列的时期长短应一致,时期数列和时点数 列的间隔力求一致。 ➢指标的计算方法、计算价格和计量单位应一致。
动态数列分析指标 1. 水平指标
序时平均数
动态平均数、平均发展水平,是对时间 数列中各期发展水平的平均,表明现象在一 段时期的一般水平。
★对于时距究竟扩大到何种程度为宜,应依据 现象和原动态数列的特点而定,以明显反映现象 的发展趋势为宜。
简单长期趋势分析法——序时平均法
例:某商场2019年各月末销售员人数
月份 上年12 1月 2月 3月 4月 5月 6月 7月 8月 9月 10 11 12

月月月
月末人 85 75 81 101 87 93 99 85 105 99 97 103 107
年距发展速度报上告年期同某月月水水平平
年距增长 上 年 速 年 距 度 同 增月 长 年水 量 距平 发 展 1 速
时间数列中的指标值为0或负数时,不宜计算速度 速度指标与发展水平指标要结合使用
平均发展速度average growth rate
环比发展速度的平均数,表明现象在一个 较长时期中逐期平均发展变化的程度。
Hale Waihona Puke Baidu
变动因素
长期趋势 (T)
时间数列的测定
客观社会经济现象在一个相当长的 时期内,由于受某种基本因素的影 响所呈现出来的一种基本走势
季节变动(S)
由于自然条件、社会条件的影响, 社会经济现象在一年内或更短的时 间内,随着季节的转变而引起的周 期性变动
循环变动 (C)
社会经济现象以若干年为周期的 涨落起伏相同或基本相同的一种 波浪式的变动
注:
★ ①累计增长量=∑逐期增长量 ②两个相邻累计增长量之差=相应的逐期增长量 ③增长量是一个时期指标 ④年距增长量=报告期某月(季)水平 - 上年某
月(季)水平
•平均增长量average growth amount
逐期增长量的平均数,表明总量指标在一段 时期内平均每期增减的绝对数量。
✓水平法 适用:多期增长量平稳变化的数列
n 1
n 1
(5)间隔不相等不连续时点的时点数列
aa1 2a2t1a2 2a3t2an12 antn1 t1t2tn1
增长量和平均增长量 •增长量growth amount
总量指标报告期水平与基期水平之差,表明 该指标在一定时期内增加或减少的绝对数量。
逐期增长量 累计增长量
a 1 a 0 ,a 2 a 1 , a n a n 1 a 1 a 0,a 2 a 0, a n a 0
时间数列的种类与编制方法
概念 时间序列、动态数列,把反映某种现象的同一
指标,在不同时间上的指标数值,按时间先后顺序 编排所形成的数列。
基本要素
现象所属的时间 反映在现象所属时间的发展水平
——统计指标数值
种类
指标 形式
绝对数时间数列 相对数时间数列
时期数列 时点数列
平均数时间数列
数据 性质
纯随机型时间数列 确定型时间数列
rate报基告期期水水平平
>100%,现象在增长 <100%,现象在下降
✓环比发展速度
各期水平 前一期水平
a1 , a2 , , an
a0 a1
an1
表明现象逐期发展的程度
✓定期发展速度(定基发展速度、总速度)
各期水平 某一固定基期水平
a1 , a2 , , an
a0 a0
a0
表明现象在一段时间内总的发展程度
时距扩大法
简单长期趋势分析法 序时平均法
移动平均法 直线配合法 长期趋势的数字模型 指数曲线趋势模型
简单长期趋势分析法——时距扩大法
把时间数列中各期指标数值按较长的时距加 以归并,形成一个新的简化了的时间数列,以消 除原数列中的季节变动和各种偶然因素的影响, 显现出长期趋势。
例:P301 表8-8
计算和应用平均速度指标应注意的问题
计算平均发展速度的基本方法:几何平均法、 高次方程法,但注意选择合适的方法 根据事物的发展状态,应用分段平均发展速度 来补充说明整个时期的总平均发展速度
在应用几何平均法计算平均发展速度时,还要 注意与环比发展速度结合进行分析 注意平均速度指标与原时间数列的发展水平、 增长量、平均水平等指标的结合应用,以便对研 究现象做出比较确切和全面的认识。
✓水平法(几何平均法)
n
X
n
Xi
i1
n
an a0
适用:水平指标的平均发展速度计算
✓方程法(累计法)
a 0 x a 0 x 2 a 0 x 3 a 0 x n a i
xx2x3xnai a0
适用:侧重于考察中长期间的累计总量
平均增长速度 = 平均发展速度-100% 表明现象在一个较长时期中逐期平均增长变化的程度
绝对数时间数列
a
ai
n
相对数时间数列
ca b
(1)时期数列
a i n
(2)间隔相等连续时点的时点数列
a
i
n
(3)间隔不等连续时点的时点数列
a iti ti
ti —与现象各期水平相应的时间距离
(4)间隔相等不连续时点的时点数列
a a 1 2 a 2 a 2 2 a 3 a n - 1 2 a n 1 2 a 1 a 2 a n 1 1 2 a n
增长速度growth rate 表明现象的增长程度
某现 基象 期报 水 告 平 报期 告 基的 期 期 基 增 水 水 期 长 平 平 发 水 量 展 平 1速
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
增 1长 的 % 绝 环 对 逐 比 期 增 1 值 增 0 长 0上 长 1速 0 期 量 0度 水平
随机变动(I)
客观社会经济现象由于天灾、人 祸、战乱等突发事件或偶然因素 引起是无周期性波动
一般模型 加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
分解方法
加法模型 T=Y-(S+C+I)
乘法模型 T=Y/(S×C×I)
1、长期趋势(Trend)测定 概念 某种现象在相当长的时期内,发展过程表现为不断 增长或不断下降的总趋势 随手法
平均增长 逐 逐 量 期 期增 增长 长量 量个 之数 和
(a1a0) (a2a1) (anan1) ana0
n
n
✓总和法
a 0 a 0 2 a 0 n a i
△ 2(at a0) n(n1)
适用:各期增长变化较大的数列
2、速度指标
发展速度development 百分数、倍数
相关文档
最新文档