基于物联网传感器网络设备的低功耗解决方案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:__________ 基于物联网传感器网络设备的低功耗解决方案

(最新版)

编制人:__________________

审核人:__________________

审批人:__________________

编制单位:__________________

编制时间:____年____月____日

据估计,物联网每年会产生100多个zettabytes(万亿千兆字节)的数据,而这个数字只会增加。到2020年,平均家庭对这一数字的贡献数据预计将增加五倍。创建数据不需要太多的计算能力,因为可以使用简单的传感器集线器捕获,数字化和存储数据。能够检测九轴运动的MEMS传感器采用封装,每侧仅测量1或2毫米。这些微型设备和越来越多的传感器构成了当今物联网的,使端点能够实时在线捕获,处理和共享数据。

由于预计更多端点可以在有限的电源下运行,从他们的环境中收获的能量,对超低功率运行的需求正在增加。端点可以是更大传感器网络的一部分,但也可能是远程和隔离的。一旦投入使用,它们可能会运行多年而无需维护,包括更换电池。

制造商正忙于开发新的解决方案来应对这一设计挑战,使我们能够设想可以收集和传输信息的设备需要任何外部电源。在可穿戴设备的情况下,这可能很快就会包括仅由佩戴者的身体或其活动提供动力的设备。

Energize!

为了说明如何实现这一点,请考虑块如图1所示。在大多数应用中,功率部分可以是各种电源管理器件中的任何一种,但对于超低功耗应用,选择仅限于专门开发的解决方案,以限度地提高有限的可用功率,如收获能源。

图1:越来越多的集成解决方案现在主要针对主要来自收获能源的应用。

图2中的框图显示了使用ADI公司ADP5090电源管理单元的典型能量收集示例。

图2:框图基于ADI公司的ADP5090的能量收集应用。

这是一款集超大功率的超低功耗升压稳压器点跟踪(MPPT)和费用管理功能。 MPPT可配置为光电和热电能源,工作范围为16 W至200 mW。该器件可以从低至380 mV的电源电压开始,仅从80 mV开始工作。它还支持使用可选的原电池,可以自动切换和切换。这款16引脚器件尺寸仅为3 mm

×3 mm,体积小巧,功能强大,是许多物联网应用的理想选择。该器件由评估和演示套件ADP5090-2-EVALZ(图3)提供支持,为开发能量收集应用提供了完美的平台。

图3:ADP5090-2-EVALZ为评估ADP5090超低功耗升压稳压器提供了完美的平台,该稳压器具有MPPT和ADI公司的充电管理功能。

表格中提供了另一种解决方案凌力尔特公司的LTC3588-1。与其他针对能量收集的PMIC一样,它具有超低静态电流。由于LTC3588设计用于带有交流电的能源,如压电发电机,因此LTC3588集成了低损耗全波桥式整流器和降压稳压器(见图4)。

图4:凌力尔特公司的LTC3588-1纳米级能量收集电源的框图。

连接到Vin引脚的外部电容作为储能器,输出电容器构成调节输出的一部分。该器件为降压转换器生成内部驱动轨,从而使输入电容中的电荷能够传输到输出电容。该器件通过开启和关闭降压转换器来工作。当输入电压足够高时,降压转换器启动。当它低于压差电压时,降压转换器被禁用,输出由输出电容保持。该滞后循环在正常操作期间重复,由外部电感器限定。可以使用D0和D1输入设置输出电压至1.8 V,2.5 V,3.3 V或3.6 V.可以使用演示电路DC1459B-A-ND 评估LTC3588-1的所有功能。

如果应用是从太阳能电池运行的无线传感器,那么赛普拉斯半导体的S6AE101A可能是完美的解决方案。这种能量

收集PMIC可与线性光源(如太阳能电池)配合使用,并且由于其低启动功率仅需1.2μW,因此能够在低至100 lux的光照条件下工作。还可以包括可选的主电池,以确保在无光条件下操作。图5显示了S6AE101A的框图,显示了主要特性,包括功率门控。

图5:S6AE101A能量收集PMIC的框图用于无线传感器节点,来自赛普拉斯半导体公司。

该器件通过将存储的电压与阈值进行比较来运行。只要存储的电压超过阈值,输出电压就会自动启用。一旦存储的电压降至阈值以下,就禁用输出电压。有效时间由总系统功耗决定,因此根据应用,电压源和储能电容器的大小而变化。还必须权衡发电机输送能量的能力,以及充电存储电容所需的时间。可以使用开发套件S6SAE101A00SA1002评估S6AE101A的所有功能。

连接

在我们的示例应用中,主要功能元件之一是RF收发器。

由于对超低功耗无线网络的需求增加,针对该应用领域的高度集成解决方案的数量不断增加。增加的是Maxim Integrated的MAX7037,它是一款4频段sub-GHz RF收发器,集成了8051微控制器和混合信号传感器接口(图6)。

图6:Maxim Integrated的MAX7037是一款超低功耗四通道多通道收发器,适用于超低功耗无线传感器网络。

在一个控制下作为主处理器,MAX7037在发送模式下功耗仅为16 mA,在接收时功耗仅为22 mA,在深度睡眠模式下仅降至100 nA。设计用于ISM sub-GHz频段,可配置为使用FFSK,FMSK或ASM调制在315,433,868或915-930 MHz 下工作。

混合信号传感器接口通过集成的9位sigma delta ADC 支持模拟传感器。主机CPU通过UART控制MAX7037,但默认情况下它作为SPI从机运行。在此模式下,其64 KB的片上闪存可以保存主机CPU编程的固件。 TEST0引脚控制器件是

在编程模式还是运行模式下启动。要评估MAX7030的功能,请查看MAX7037EVKIT。

另一种不需要主机CPU的替代且稍微集成的解决方案可能是德州仪器的CC1310,是SimpleLink的一部分家庭。如图7所示,这款超低功耗sub-GHz无线MCU集成了ARM®Cortex®-M3内核和超低功耗传感器控制器,可自主运行以节省系统功耗,以及完全集成的RF收发器能够在315,433,470,500,779,868和915 - 920 MHz下工作。

图7:德州仪器的CC1310是SimpleLink系列高度集成的无线MCU

相关文档
最新文档