一次函数应用专题课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴返程途中S 与时间t的函数关系是S=-60t+1020, 小明全家当天17:00到家。
(3)本题答案不唯一,只要合理即可,但需注意合理性, 主要体现在:
①9:30前必须加一次油;
②若8:30前将油箱加满,则当天在油用完前的适当时 间必须第二次加油;
③全程可多次加油,但加油总量至少为25升。
试一试:近几年来,由于经济和社会发展迅速,用电矛盾 越来越突出。为缓解用电紧张,某电力公司特制定了新的 用电收费标准,每月用电量x(度)与应付电费y(元)的关 系如图所示。
乙地运往A校的草皮为(3600- x)平方米,
乙地运往B校的草皮为(x -1100)平方米。
A校
B校
甲地 乙地
x (3600- x)
(3500- x) (x -1100)
∵ x ≥0,3500- x ≥0,3600- x ≥0,x -1100≥0.∴1100≤ x≤3500
总运费最省的方案为:
甲地 乙地
答小明全家到家是什么时间?
(3解):若设出s=发kx时+汽b,由车(油1箱4,中1存80油) 15 升,该及汽(车1的5,油12箱0)总得容量为35升, 汽你11k=车就54kk-“每++60bቤተ መጻሕፍቲ ባይዱ何行,==b1=1驶时821100加0千2①②油0米。和耗加油解油1方/量9程升”组。给得请小 明∴全S=家-6提0出t+一10个20合理(化14建≤t议≤1。7) (加令S油=所0,用得时t=间17忽。略不计)
如(3:)请设计总运费最省的草 总运皮费运=送2方0×案0,.1并5说×明35理0由0+。15×0.2 ×100+20×0.2×2400=20400 (元)
甲地 乙地
A校 B校
3500 100
2400
(3)设甲地运往A校的草皮为x平方米,总运费为y元。 ∴甲地运往B校的草皮为(3500- x)平方米,
A校
B校
路程
运费单价
路程
运费单价
(千米)
(元)
(千米)
(元)
甲地
20
0.15
10
0.15
乙地
15
0.20
20
0.20
(注:运费单价表示每平方米草皮运送1千米所需的人民币。)
求(1)分别求出图1、图2的阴影 部分面积;
解(:2S)A请=你(9给2-出2一)(4种2草-2皮)=运3送60方0案米,2
SB并=求(6出2-总2)运×费40;=2400米2
练一练:甲乙两人连续6年对某县农村甲鱼养殖业的规模
(产量)进行调查如图(所示)提供两方面的信息。 甲调查表明:每个甲鱼池个数由第一年1万只上升到第6年2 万只。 乙调查表明:甲鱼池个数由第一年30个减少到第6年10个。 请你根据提供的信息说明:
(1)第二年全县出产甲鱼的总数; 1.2×26=31.2(万只) (2)到第6年这个县的甲鱼养殖规模比第一年是扩大了还是 缩小了?说明理由。
⑴请你根据图像所描述的信息, 分别求出当0≤x≤50和x>50时,y 与x的函数关系式。
Y=0.5x (0≤x≤50) Y=0.9x-20 (x>50)
⑵根据你的分析:当每月用电量不 超过50度时,收费标准是_0_._5_元_/_度_;; 当每月用电量超过50度时,收费标 准是:不超过50度部分按0.5元/度计算,超过部分按0.9元/度计算。
A校 B校
1100 2400
2500
0
⑴设工厂每月生产x件产品,每月利润为y元,分别求出施行方 案1和方案2时,y与x的函数关系式;(利润=总收入-总支出)
⑵月生产量为6000件产品时,在不污染环境双节约资金的 前提下应选哪种处理污水的方案?请通过计算加以说明。
本课的全过程可以概括为:
(1)识别、分析函数图表所描述的信息; (2)把简单的实际问题转化为数学问题(函数模型); 利用数学方法来解决有关实际问题;
答:缩小了,因为第一年这个县的甲鱼养殖规模为1×30=30(万只), 到第6年这个县的甲鱼养殖规模为2×10=20(万只)
探究:为了美化校园环境,争创绿色学校,某县教育局委托园林公
司对A、B两校进行校园绿化。已知A校有如图1的阴影部分空地需铺 设草坪,B校有如图2的阴影部分空地需铺设草坪。在甲、乙两地分别 有同种草皮3500平方米和2500平方米出售,且售价一样。若园林公 司向甲、乙两地购买草皮,其路程和运费单价表如下:
《函数的应用专题
“五一黄金周”的某一 天,小明全家上午8时自驾小汽车从家 里出发,到距离180千米的某著名旅游景点游玩。该小汽车离
家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示。
根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游 玩了多少小时?
(解2:)由求图出像返可程知,途小中明,全s家(千在旅米游) 与景时点游间玩t(了时4小)的时函。 数关系,并回
2019SUCCESS
POWERPOINT
2019/5/21
2019SUCCESS
THANK YOU
2019/5/21
现实问题 数学化 数学问题(模型) 数学方法
数学问题的解 还原说明 现实问题的解。
(3)数学与生活、生产实际有密切联系,我们碰到实际 问题要善于用数学方法去分析、去解决,看到数学的函 数图像也要善于给它赋予不同的意义,这是学好数学的 秘诀之一。
探究性作业
(1)适当选取【问题1】图象中所给的数据,编一个一 元一次方程的应用题,并列出方程(不用求解方程)。 (2)请你联系生活、生产实际,也可联系其他学科的知 识,给【问题1】图象赋予不同的意义,提出两个以上意 义不同的问题。
(3)本题答案不唯一,只要合理即可,但需注意合理性, 主要体现在:
①9:30前必须加一次油;
②若8:30前将油箱加满,则当天在油用完前的适当时 间必须第二次加油;
③全程可多次加油,但加油总量至少为25升。
试一试:近几年来,由于经济和社会发展迅速,用电矛盾 越来越突出。为缓解用电紧张,某电力公司特制定了新的 用电收费标准,每月用电量x(度)与应付电费y(元)的关 系如图所示。
乙地运往A校的草皮为(3600- x)平方米,
乙地运往B校的草皮为(x -1100)平方米。
A校
B校
甲地 乙地
x (3600- x)
(3500- x) (x -1100)
∵ x ≥0,3500- x ≥0,3600- x ≥0,x -1100≥0.∴1100≤ x≤3500
总运费最省的方案为:
甲地 乙地
答小明全家到家是什么时间?
(3解):若设出s=发kx时+汽b,由车(油1箱4,中1存80油) 15 升,该及汽(车1的5,油12箱0)总得容量为35升, 汽你11k=车就54kk-“每++60bቤተ መጻሕፍቲ ባይዱ何行,==b1=1驶时821100加0千2①②油0米。和耗加油解油1方/量9程升”组。给得请小 明∴全S=家-6提0出t+一10个20合理(化14建≤t议≤1。7) (加令S油=所0,用得时t=间17忽。略不计)
如(3:)请设计总运费最省的草 总运皮费运=送2方0×案0,.1并5说×明35理0由0+。15×0.2 ×100+20×0.2×2400=20400 (元)
甲地 乙地
A校 B校
3500 100
2400
(3)设甲地运往A校的草皮为x平方米,总运费为y元。 ∴甲地运往B校的草皮为(3500- x)平方米,
A校
B校
路程
运费单价
路程
运费单价
(千米)
(元)
(千米)
(元)
甲地
20
0.15
10
0.15
乙地
15
0.20
20
0.20
(注:运费单价表示每平方米草皮运送1千米所需的人民币。)
求(1)分别求出图1、图2的阴影 部分面积;
解(:2S)A请=你(9给2-出2一)(4种2草-2皮)=运3送60方0案米,2
SB并=求(6出2-总2)运×费40;=2400米2
练一练:甲乙两人连续6年对某县农村甲鱼养殖业的规模
(产量)进行调查如图(所示)提供两方面的信息。 甲调查表明:每个甲鱼池个数由第一年1万只上升到第6年2 万只。 乙调查表明:甲鱼池个数由第一年30个减少到第6年10个。 请你根据提供的信息说明:
(1)第二年全县出产甲鱼的总数; 1.2×26=31.2(万只) (2)到第6年这个县的甲鱼养殖规模比第一年是扩大了还是 缩小了?说明理由。
⑴请你根据图像所描述的信息, 分别求出当0≤x≤50和x>50时,y 与x的函数关系式。
Y=0.5x (0≤x≤50) Y=0.9x-20 (x>50)
⑵根据你的分析:当每月用电量不 超过50度时,收费标准是_0_._5_元_/_度_;; 当每月用电量超过50度时,收费标 准是:不超过50度部分按0.5元/度计算,超过部分按0.9元/度计算。
A校 B校
1100 2400
2500
0
⑴设工厂每月生产x件产品,每月利润为y元,分别求出施行方 案1和方案2时,y与x的函数关系式;(利润=总收入-总支出)
⑵月生产量为6000件产品时,在不污染环境双节约资金的 前提下应选哪种处理污水的方案?请通过计算加以说明。
本课的全过程可以概括为:
(1)识别、分析函数图表所描述的信息; (2)把简单的实际问题转化为数学问题(函数模型); 利用数学方法来解决有关实际问题;
答:缩小了,因为第一年这个县的甲鱼养殖规模为1×30=30(万只), 到第6年这个县的甲鱼养殖规模为2×10=20(万只)
探究:为了美化校园环境,争创绿色学校,某县教育局委托园林公
司对A、B两校进行校园绿化。已知A校有如图1的阴影部分空地需铺 设草坪,B校有如图2的阴影部分空地需铺设草坪。在甲、乙两地分别 有同种草皮3500平方米和2500平方米出售,且售价一样。若园林公 司向甲、乙两地购买草皮,其路程和运费单价表如下:
《函数的应用专题
“五一黄金周”的某一 天,小明全家上午8时自驾小汽车从家 里出发,到距离180千米的某著名旅游景点游玩。该小汽车离
家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示。
根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游 玩了多少小时?
(解2:)由求图出像返可程知,途小中明,全s家(千在旅米游) 与景时点游间玩t(了时4小)的时函。 数关系,并回
2019SUCCESS
POWERPOINT
2019/5/21
2019SUCCESS
THANK YOU
2019/5/21
现实问题 数学化 数学问题(模型) 数学方法
数学问题的解 还原说明 现实问题的解。
(3)数学与生活、生产实际有密切联系,我们碰到实际 问题要善于用数学方法去分析、去解决,看到数学的函 数图像也要善于给它赋予不同的意义,这是学好数学的 秘诀之一。
探究性作业
(1)适当选取【问题1】图象中所给的数据,编一个一 元一次方程的应用题,并列出方程(不用求解方程)。 (2)请你联系生活、生产实际,也可联系其他学科的知 识,给【问题1】图象赋予不同的意义,提出两个以上意 义不同的问题。