《纳米陶瓷材料在生活生产中的应用》

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《纳米陶瓷材料在生活生产中的应用》

纳米陶瓷材料在生活生产中的应用

摘要:简要介绍了陶瓷和纳米陶瓷的发展历史,纳米陶瓷的制备方法及性能,并说明了纳米陶瓷材料以后的应用,发展,为以后的发展做参考。

关键字:纳米陶瓷,制备,发展,性能

工程陶瓷具有硬度高、耐高温、耐磨损、耐腐蚀以及质量轻、导热性能好等优点,因而得到了广泛的应用,但是工程陶瓷的缺陷在于它的脆性(裂纹)、均匀性差、可靠性低、韧性、强度较差,因而使其应用受到了较大的限制。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平(1~100nm),使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。

1、陶瓷的发展历史

陶瓷是人类最早利用自然界提供的原料制造而成的材料。旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。

从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶粒构成的物体。

随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了陶瓷强度的提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。

从传统陶瓷到先进陶瓷,是陶瓷发展过程中的第二次重大飞跃。两者的区别在于,在原材料、制备工艺、显微结构等方面存在相当的差别或侧重。传统陶瓷多数采用天然矿物原料,或经过处理的天然原料;而先进陶瓷则多数采用合成的化学原料,有时甚至是经特殊工艺合成的化学原料。

近年来,先进陶瓷在材料和制备技术方面的研究都取得了很大的进展,特别是把陶瓷的制备、组成、结构和性能联系起来进行。综合研究的结果使陶瓷学家认识到,陶瓷的显微结构有着举足轻重的作用。即使化学组成完全相同,采用不同的制备工艺技术,有时甚至只有很微小的差别便可能导致显微结构发生很明显的变化,材料的性能常常相差非常大。

从先进陶瓷发展到纳米陶瓷是陶瓷发展过程中的第三次飞跃。纳米陶瓷将给人们提供更新更好的材料。

2、纳米陶瓷

2.1、纳米陶瓷

在原有工作的基础上,人们认识到,材料的性能和它的晶粒尺寸关系极为密切,诸如强度、蠕变、硬度、电学性能、光学性能等,无一不与晶粒尺寸成一定的指数关系。

纳米陶瓷是80年代中期发展起来的先进材料。由于它是界于宏观物质和微观原子、分子的中间研究领域,它的出现开拓了人们认识物质世界的新层次,对材料的工艺,制备科学,以至整个材料科学带来了新的研究内涵。虽然,电子显微镜,包括扫描电子显微镜和透射电子显微镜以及高分辨电镜和分析电镜等现代表征技术的发展,使人们能进入到纳米量级(10-9m)线度上来研究纳米陶瓷中晶界的化学组分及显微结构,但由纳米材料所引起的诸如超微粉体学,烧结动力学,各种掺入纯物质的纳米陶瓷的显微结构以及由此引起的物理性能的变化,都是当今研究陶瓷的热门话题,还有待于人们进一步的研究。

2.2、纳米粉末的制备:

要制成纳米陶瓷,主要包括两大步骤:一是制取纳米陶瓷粉,二是致密化成块状纳米材料。纳米粉的制备技术有气相合成和凝聚相合成两大类,再加上一些其它方法。

2.2.1、气相合成:在惰性气氛中,蒸发的单体凝结成原子团。一般是先建立单体群,靠与冷惰性气体原子碰撞来冷却单体,靠单体累加或原子团间的碰撞使原子团生长。这种合成法对制备纳米陶瓷粉有下列优点:a)增强了低温下的可烧结性,这主要是由于高的驱动力和短的扩散距离所致。b)有相对高的纯净性和高的表面及晶粒边界纯度。c)这类方法相对来说较为简单,易于达到高速率生产。

炉源法:它是用以建立单体的最简单技术,原料在坩埚中经加热直接蒸发生气态,以产生悬浮微粒或烟雾状原子团。越接近源,小原子团的尺寸越均匀;远离源,原子团变大,其粒径分布变宽。离开蒸发源到一定距离时,原子团达到极限粒径该特征距离值取决于惰性气体的压强和源的蒸发速率。原子团极限粒径将随蒸发速率的加大和惰性气体原子量的增大而增加。原子团的平均粒径可由改变蒸发速率以及蒸发室内的惰性气体的压强来控制,粒径可小至3~4nm。粒径分布显示对数正态分布,这种分布表明团—团聚结的特征。在惰性气体中,加一种强制对流的气流,可降低原子团粒径的平均值,其粒径分布宽度亦趋窄。对高蒸气压的样品,可用升华代替蒸发。例如MgO,在200Pa的He压中,加热到接近于1600℃(MgO的熔点为2850℃)。经升华后,发现是缺氧的,但可将它暴露在引入真空室的氧气氛下,而最终使其转化

成符合化学计量比的MgO。

炉源法可制备氧化物陶瓷粉。如要制备TiO2,可在He中蒸发金属Ti来获得,先制取松散的纳米金属粉,然后由引入到小室的氧气进行氧化,典型的氧压为2kPa。实验证明,惰性气体气压的控制不仅影响颗粒大小,有时也影响形成材料的物相。

用加热生成单体,技术简单,但其局限性也很明显,故只有少数几种陶瓷材料如TiO2、CaF2等用该方法来制备纳米粉。

热解法:是指采用高温先使反应剂气体的气相分解,再产生所要组分原子的饱和蒸气。热解主要有两种:激光热解和火焰热解。

激光热解是将一种用惰性气体为载体的流动的反应剂气体用激光快速加热,实现快速的,反应剂气体的气相分解。当分解物被载流气体的原子(分子)碰撞而达到淬冷后,原子团进行成核和生长。这种技术被广泛用于合成Si3N4、SiC、Al2O3等纳米陶瓷粉。对制取非金属化合物,靠将乙烯加入气体混合物以产生碳化物;靠将NH3加入以产生氮化物。激光热解优点是可连续加工,可用激光功率和反应剂流率来控制产率。

另一种是火焰热解,这是一种挥发性化合物如TiCl4或SiCl4在氢—氧焰中的反应,它导致生成弥散度较高的氧化物团,用于制取Al2O3、SiO2、Bi2O3、ZrO2和TiO2等。这种技术的主要优点是高纯、具有化学可变性,以及有合成混合氧化物的可能。

2.2.2 凝聚相合成:主要有下列三种方法。

离子性材料中的分解和沉淀反应:已被用于产生纳米团,例如Mg(OH)2和MgCO3的分解产生具有大约2nm直径的MgO分子团。

Sol-gel法(溶胶—凝胶法):被用在各类系统中产生小于10nm的SiO2、Al2O3和TiO2纳米团。要获得纳米结构,可引入具有最终平衡相结晶陶瓷的先驱物作为籽晶,进行催化成核,在基体中引入晶核的目的是为了降低形成所需相的成核能。要制备包含一个或多个高蒸气压组分的化学计量比化合物,遇到一定的困难。如要制备(BaPb)TiO3,严重的问题就是由于高蒸气压组分铅的损失,而该困难可由sol-gel法避免,与其它高温方法比,该方法是在低温下进行的。

水热反应:即水在高于沸点时的反应,已被用来合成纳米团。至今所用的两种反应是水热沉淀和氧化,两种反应可产生水中的结晶状金属氧化物的悬浮物。已制成了简单氧化物(ZrO2,Al2O3、TiO2,MgO)以及混合氧化物(ZrO2-Y2O3,ZrO2-MgO、ZrO2-Al2O3、BaTiO3)等的10nm~100nm的纳米团。

相关文档
最新文档