IKSEMI高压三端稳压器IL2576HV-12D2T-P-奥伟斯

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IL2576HV-12D2T-P稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。

这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。

这些稳压器需要最少的外部组件,易于使用,并包括故障保护和固定频率振荡器。

IL2576HV-12D2T-P高压三端稳压器可为流行的三端线性稳压器提供高效替代。

它大大减小了散热器的尺寸,并且在某些情况下不需要散热器。

几个不同的制造商都提供了针对IL2576HV/LM2576HV系列使用而优化的标准系列电感器。

此功能极大地简化了开关电源的设计。

其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,在振荡器频率上的容差为±10%。

包括外部关机功能,待机电流典型值为50 µA。

输出开关包括逐周期限流以及热关断功能,可在故障情况下提供全面保护。

IL2576HV LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT
1Features
•LMR33630 36V,3A,400kHz同步转换器
• 3.3V,5V,12V,15V和可调输出版本
•可调版本输出电压范围:1.23 V至37 V(对于HV 版本为57 V)在整个线路和负载条件下最大±4%•指定的3A输出电流
•宽输入电压范围:40 V,最高为HV 60 V
•仅需四个外部组件
•52kHz固定频率内部振荡器
•TTL关机功能,低功耗待机模式
•高效率
•使用现成的标准电感器
•热关断和限流保护
•使用WEBENCH工具创建自定义设计
2Applications
•马达驱动
•商家网络和服务器PSU
•家电类
•测试测量设备
3Description
LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。

这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。

这些稳压器需要最少的外部组件,易于使用,并具有故障保护和固定频率振荡器。

LM2576系列可为流行的三端线性稳压器提供高效替代。

它大大减小了散热器的尺寸,在某些情况下不需要散热器。

几个不同的制造商可提供针对LM2576使用而优化的标准系列电感器。

此功能极大地简化了开关电源的设计。

.
其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,振荡器频率的容差为±10%。

包括外部关机功能,具有50μA(典型值)的待机电流。

输出开关包括逐周期电流限制,以及热关断功能,可在故障情况下提供全面保护。

LMR33630具有许多其他功能,可降低BOM成本,提高效率并将解决方案尺寸减小85%。

请参阅设备比较表以比较规格。

使用LMR33630开始WEBENCH设计。

(1)
PART NUMBER PACKAGE BODY SIZE (NOM) LM2576TO-220 (5)10.16 mm × 8.51 mm LM2576HV DDPAK/TO-263(5)10.16 mm × 8.42 mm (1) For all available packages, see the orderable addendum at the
end of the data sheet.
Fixed Output Voltage Version Typical Application Diagram
Table of Contents
1Features .................................................................. 1 7.3Feature Description. (12)
2Applications ........................................................... 1 7.4Device Functional Modes. (14)
3Description ............................................................. 1 8Application and Implementation (16)
4Revision History..................................................... 2 8.1Application Information.. (16)
5Pin Configuration and Functions ......................... 3 8.2Typical Applications (20)
9Power Supply Recommendations25 6Specifications (4)
10Layout26
6.1Absolute Maximum Ratings (4)
6.2ESD Ratings.............................................................. 4 10.1Layout Guidelines . (26)
10.2Layout Example (27)
6.3Recommended Operating Conditions (4)
10.3Grounding (27)
6.4Thermal Information (4)
10.4Heat Sink and Thermal Considerations (27)
6.5Electrical Characteristics: 3.3 V (5)
11Device and Documentation Support29
6.6Electrical Characteristics: 5 V (5)
6.7Electrical Characteristics: 12 V ................................. 5 11.1Device Support . (29)
6.8Electrical Characteristics: 15 V ................................. 6 11.2Documentation Support . (30)
6.9Electrical Characteristics: Adjustable Output11.3Related Links (30)
Voltage ....................................................................... 6 11.4Support Resources .. (30)
6.10 Electrical Characteristics: All Output Voltage11.5Receiving Notification of Documentation Updates 30
Versions ..................................................................... 6 11.6Trademarks .. (30)
6.11Typical Characteristics ............................................8 11.7Electrostatic Discharge Caution. (30)
7Detailed Description ............................................12 11.8Glossary . (31)
7.1Overview .................................................................12 12Mechanical, Packaging, and Orderable
7.2Functional Block Diagram .......................................12 Information .. (31)
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision D (May 2016) to Revision E Page • Added information about the LMR33630 (1)
Changes from Revision C (April 2013) to Revision D Page •Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. (1)
•Moved the thermal resistance data from the Electrical Characteristics: All Output Voltage Versions table to the Thermal Information table (4)
Changes from Revision B (April 2013) to Revision C Page •Changed layout of National Data Sheet to TI format (3)
5 Pin Configuration and Functions
KC Package
5-Pin TO-220
Top View
KTT Package
DDPAK/TO-263 (S) Package
5-PIN DDPAK/TO-263
Top View5-Lead Surface-Mount Package
Top View
Pin Functions
PIN
I/O(1)DESCRIPTION
Supply input pin to collector pin of high-side transistor. Connect to power supply and input 1V IN I bypass capacitors CIN. Path from V IN pin to high-frequency bypass C IN and GND must be as
short as possible.
2OUTPUT O Emitter pin of the power transistor. This is a switching node. Attach this pin to an inductor and the cathode of the external diode.
3GROUND—Ground pin. Path to C IN must be as short as possible.
4FEEDBACK I Feedback sense input pin. Connect to the midpoint of feedback divider to set VOUT for ADJ version or connect this pin directly to the output capacitor for a fixed output version.
Enable input to the voltage regulator. High = OFF and low = ON. Connect to GND to enable
5ON/OF
F I the voltage regulator. Do not leave this pin float.
—TAB—Connected to GND. Attached to heatsink for thermal relief for TO-220 package or put a copper plane connected to this pin as a thermal relief for DDPAK package.
(1) I = INPUT, O = OUTPUT
6Specifications
6.1 Absolute Maximum Ratings
(1)(2)
(1)超出绝对最大额定值列出的应力可能会导致设备永久损坏。

这些仅是额定应力,并不意味着设备在这些或任何其他条件下(在“建议的工作条件”中未指明)下的功能运行。

长时间处于绝对最大额定条件下可能会影响设备的可靠性。

(1)JEDEC文件JEP155指出500-V HBM允许通过标准ESD控制过程进行安全制造。

6.3 Recommended Operating Conditions
(1)有关传统和新的热量指标的更多信息,请参见《半导体和IC封装热量指标》应用报告SPRA953和《使用新的热量指标》应用报告SBVA025。

(2)封装热阻根据JESD 51-7计算
(3)在4层JEDEC板上模拟热阻。

6.5 Electrical Characteristics: 3.3 V
(1)外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。

如图26和图32所示使用LM2576 / LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。

6.6 Electrical Characteristics: 5 V
(1)外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。

如图26和图32所示使用LM2576 / LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。

6.7 Electrical Characteristics: 12 V
(1) 外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。

如图26和图32所示使用LM2576 /
LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。

6.8 Electrical Characteristics: 15 V
(1)外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。

如图26和图32所示使用LM2576 /
LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。

6.9 Electrical Characteristics: Adjustable Output Voltage
(1) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
When the LM2576/LM2576HV is used as shown in Figure 26 and Figure 32, system performance is as shown in Electrical
Characteristics: All Output Voltage Versions.
6.10 Electrical Characteristics: All Output Voltage Versions
(1) 除非另有说明,否则所有规定的限值均在室温(25°C)下进行。

所有室温限制均经过100%生产测试。

使用标准统计质量控制
(SQC)方法,通过相关性指定了极端温度下的所有限制。

(2)
(3) 外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。

如图26和图32所示使用LM2576 /
LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。

(4)
(5) 在输出短路或过载的情况下,振荡器频率降低至大约11 kHz,这会导致调节后的输出电压从标称输出电压下降大约40%。

这种自我
保护功能通过将最小占空比从5%降低到大约2%,降低了IC的平均功耗。

Electrical Characteristics: All Output Voltage Versions (continued)
(4)输出引脚拉电流。

没有二极管,电感器或电容器连接到输出。

(5)反馈引脚已从输出端移出并连接到0V。

(6)反馈引脚已从输出端移除,并针对可调,3.3V和5V版本连接至+12 V,对于12V和15V版本连接至+25 V,以强制输出晶体管截止。

(7)VIN = 40 V(对于高压版本为60 V)。

6.11 Typical Characteristics
(Circuit of Figure 26 and Figure 32)
Figure 1. Normalized Output Voltage Figure 2. Line Regulation
Figure 3. Dropout Voltage Figure 4. Current Limit
Figure 5. Quiescent Current Figure 6. Standby Quiescent Current
Typical Characteristics (continued)
(Circuit of Figure 26 and Figure 32) Figure 7. Oscillator Frequency
Figure 8. Switch Saturation Voltage Figure 9. Efficiency
Figure 10. Minimum Operating Voltage
Figure 11. Quiescent Current versus Duty Cycle
Figure 12. Feedback Voltage versus Duty Cycle
Typical Characteristics (continued)
Figure 13. Minimum Operating Voltage Figure 14. Quiescent Current versus Duty Cycle Figure 15. Feedback Voltage versus Duty Cycle Figure 16. Feedback Pin Current
V OUT = 15 V
A: Output Pin Voltage, 50 V/div
If the DDPAK/TO-263 package is used, the thermal resistance can be B: Output Pin Current, 2 A/div
reduced by increasing the PCB copper area thermally connected to C: Inductor Current, 2 A/div
D: Output Ripple Voltage, 50 mV/div,
the package. Using 0.5 square inches of copper area, θJA is 50°C/W,
with 1 square inch of copper area, θJA is 37°C/W, and with 1.6 or AC-Coupled
Horizontal Time Base: 5 μs/div
more square inches of copper area, θJA is 32°C/W.
Figure 17. Maximum Power Dissipation (DDPAK/TO-263)Figure 18. Switching Waveforms
Typical Characteristics (continued)
(Circuit of Figure 26 and Figure 32)
Figure 19. Load Transient Response
7Detailed Description
7.1 Overview
LM2576 SIMPLE SWITCHER稳压器是一种易于使用的,非同步降压型DC-DC转换器,对于HV版本,其输入电压范围从40V至最高60V。

它具有出色的线路和负载调节能力,能够提供高达3A的DC负载电流。

这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。

该系列只需要很少的外部元件,其引脚排列是为简单,最佳的PCB布局而设计的。

7.2 Functional Block Diagram
V IN
Internal ON/OFF
1ON/OFF5
DC Input
+Rgulator
C IN4
Feedback
R2
Fixed Gain
3 Amp
Error Amp
+Switch
+
Comparator
R1±
Driver
1 k±OUTPUT L1V OUT
2
D1+L
C OUT O
1.23 V 52 kHZ THERMAL CURRENT3
A
BAND-GAP OSCILLATOR RESET SHUTDOWN LIMIT D
REFER ENCE
GND
3.3 V R2 = 1.7 k
5 V, R2 = 3.1 k
12 V, R2 = 8.84 k
15 V, R2 = 11.3 k
For ADJ. Version
R1 = Open, R2 = 0 Ω
Patent Pending
7.3 Feature Description
7.3.1 Undervoltage Lockout
某些应用中,希望保持稳压器保持关闭状态,直到输入电压达到某个阈值为止。

图20显示了完成该任务的欠压锁定电路,而图21显示了应用于降压-升压配置的相同电路。

这些电路使稳压器保持关闭状态,直到输入电压达到预定水平为止。

V TH≈ V Z1 + 2V BE(Q1)(1)
Feature Description (continued)
+V IN
+V IN
LM2576-XX
+
1
R1
C IN
20
20 K
5 ON/OFF 3 GND
Q1
R2 10 K
Complete circuit not shown.
Figure 20. Undervoltage Lockout for Buck Circuit
+V IN
+V IN
LM2576-XX
+
1
R1
C IN
20 K
20 K
5 ON/OFF 3 GND
Z1
Q1
R2 10 K
-V OUT
Complete circuit not shown (see Figure 24).
Figure 21. Undervoltage Lockout
for Buck-Boost Circuit
7.3.2 Delayed Start-Up
The ON/OFF pin can be used to provide a delayed start-up feature as shown in Figure 22. With an input voltage of 20 V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit begins switching. Increasing the RC time constant can provide longer delay times, but excessively large RC time constants can cause problems with input voltages that are high in 60-Hz or 120-Hz ripple, by coupling the ripple into the ON/OFF pin.
7.3.3 Adjustable Output, Low-Ripple Power Supply
Figure 23 shows a 3-A power supply that features an adjustable output voltage. An additional LC filter that reduces the output ripple by a factor of 10 or more is included in this circuit.
Feature Description (continued)
+V IN+V IN
LM2576-XX
+
1
C D0.1 …F
+5ON/OFF 3GND
C IN100 …F
R D47 K
Complete circuit not shown.
Figure 22. Delayed Start-Up
Feedback
+V IN4Output
Unregulated LM2576HV-ADJ
1L1
Voltage
DC Input Output
2150 µH R220 µ+1.2 to 50 V @3A
+3GND5ON/OFF50 k
+C OUT+C1
C IN100 …F
D1
1N58222000 …F
R1
100 …F
1.21 k
optional output ripple filter
Figure 23. 1.2-V to 55-V Adjustable 3-A Power Supply With Low Output Ripple
7.4Device Functional Modes
7.4.1 Shutdown Mode
The ON/OFF pin provides electrical ON and OFF control for the LM2576. When the voltage of this pin is higher than 1.4 V, the device is in shutdown mode. The typical standby current in this mode is 50 μA.
7.4.2 Active Mode
When the voltage of the ON/OFF pin is below 1.2 V, the device starts switching, and the output voltage rises until it reaches the normal regulation voltage.
7.4.3 Current Limit
LM2576器件具有电流限制功能,以防止在输出意外过载期间开关电流超过安全值。

该电流极限值可在ICL标题下的《电气特性:所有输出电压版本》中找到。

Device Functional Modes (continued)
LM2576使用逐周期峰值电流限制进行过载保护。

这有助于防止损坏设备和外部组件。

每当电感器电流超过《电气特性:所有输出电压版本》中给出的ICL值时,调节器便以电流限制模式工作。

如果负载电流大于3 A或转换器正在启动,则会发生这种情况。

请记住,最大可用负载电流取决于输入电压,输出电压和电感器值。

稳压器还集成了短路保护,以防止电感电流失控。

当FB引脚(ADJ)上的电压降至约0.58 V以下时,开关频率降至约11 kHz。

这允许电感器电流在开关断开时间内充分下降,以防止饱和。

8.1 Application Information
8.1.1Input Capacitor (C IN)
为了保持稳定性,稳压器输入引脚必须至少旁路一个100μF的电解电容。

电容器的引线必须保持短路,并放置在调节器附近。

如果工作温度范围包括低于-25°C的温度,则输入电容值可能需要更大。

对于大多数电解电容器,随着温度和寿命的降低,电容值会减小,ESR会增加。

并联陶瓷或固态钽电容器可提高调节器在低温下的稳定性。

为了最大程度地延长电容器的使用寿命,电容器的RMS纹波电流额定值必须大于:
(2) 8.1.2 Inductor Selection
所有开关稳压器都有两种基本的工作模式:连续和不连续。

两种类型之间的差异与电感器电流有关,无论该电感器电流是连续流动还是在正常开关周期的一段时间内下降到零。

每种模式均具有独特的工作特性,这可能会影响调节器的性能和要求。

LM2576(或任何SIMPLE SWITCHER系列)可用于连续和不连续操作模式。

图27至图31中的电感器值选择指南是针对连续电感器电流类型的降压稳压器设计而设计的。

使用电感器选择指南中显示的电感器值时,峰峰值电感器纹波电流约为最大直流电流的20%至30%。

在负载电流相对较大的情况下,电路以连续模式工作(电感器电流始终在流动),但是在轻负载条件下,电路被迫进入不连续模式(电感器电流在一段时间内降至零)。

这种不连续的操作模式是完全可以接受的。

对于轻负载(小于大约300 mA),可能需要在不连续模式下运行调节器,这主要是因为不连续模式所需的电感值较低。

选择指南选择了适合于连续模式工作的电感器值,但是如果选择的电感器值过高,则设计人员必须研究不连续工作的可能性。

电感器有不同的样式,例如罐形铁心,环形,E型框架,线轴铁心等,以及不同的铁心材料,例如铁氧体和铁粉。

线轴芯是最便宜的类型,由缠绕在铁氧体棒芯上的线组成。

这种结构使电感器价格便宜。

但是,由于磁通量未完全包含在磁芯内,因此线轴磁芯会产生更多的电磁干扰(EMI)。

由于示波器探头中的感应电压,此EMI可能会导致敏感电路出现问题或给出错误的示波器读数。

选型表中列出的电感器包括用于AIE的铁氧体罐芯结构,用于脉冲工程的铁粉环形磁芯以及用于Renco的铁氧体线圈芯。

Application Information (continued)
电感器不得超过其最大额定电流,因为它会饱和。

当电感器开始饱和时,电感迅速减小,并且电感器开始看起来主要是电阻性的(绕组的直流电阻),从而导致开关电流非常迅速地上升。

不同类型的电感器具有不同的饱和特性,选择电感器时必须考虑这一点。

电感制造商的数据手册包括电流和能量限制,以避免电感饱和。

8.1.3 Inductor Ripple Current
当切换器以连续模式运行时,电感器电流波形的范围从三角形到锯齿形(取决于输入电压)。

对于给定的输入电压和输出电压,该电感器电流波形的峰峰值幅度保持恒定。

随着负载电流的上升或下降,整个锯齿电流波形也将上升或下降。

该波形的平均DC值等于DC负载电流(在降压稳压器配置中)。

如果负载电流降至足够低的水平,则锯齿电流波形的底部将达到零,并且切换器将切换到不连续的工作模式。

这是一种完全可以接受的操作模式。

如果负载电流足够轻,则任何降压开关稳压器(无论电感值有多大)都必须不连续运行。

8.1.4 Output Capacitor
需要一个输出电容器来过滤输出电压,并且还需要一个环路稳定性。

必须使用短PCB走线将电容器放置在LM2576附近。

通常使用标准的铝电解电容就足够了,但是TI建议使用低ESR类型,以实现低输出纹波电压和良好的稳定性。

电容器的ESR取决于许多因素,包括:值,额定电压,物理尺寸和结构类型。

通常,低值或低电压(小于12 V)的电解电容器通常具有较高的ESR值。

输出纹波电压的大小主要取决于输出电容器的ESR(等效串联电阻)和电感器纹波电流(IIND)的幅度。

参见“电感纹波电流”部分。

较低的电容器值(220μF至1000μF)通常允许50 mV至150 mV的输出纹波电压,而较大容量的电容器则将纹波减小至大约20 mV至50 mV。

Output Ripple Voltage = ( I IND)(ESR of C OUT)(3)为了进一步降低输出纹波电压,可以并联几个标准电解电容器,也可以使用更高等级的电容器。

这样的电容器通常被称为高频,低电感或低ESR。

这些将输出纹波减小到10 mV或20 mV。

但是,以连续模式工作时,将ESR降低至0.03Ω以下可能会导致稳压器不稳定。

钽电容器的ESR可能很低,如果它是唯一的输出电容器,则必须仔细评估。

由于其良好的低温特性,钽可与铝电解电容器并联使用,钽占总电容的10%或20%。

电容器在52 kHz时的纹波电流额定值必须至少比峰峰值电感器纹波电流高50%。

8.1.5 Catch Diode
降压稳压器需要一个二极管来为开关断开时的电感器电流提供返回路径。

必须使用短引线和短印刷电路走线将此二极管靠近LM2576放置。

由于其快速的开关速度和低的正向压降,肖特基二极管可提供最佳效率,尤其是在低输出电压开关稳压器(小于 5 V)中。

快速恢复,高效或超快速恢复二极管也适用,但是某些具有突然关断特性的二极管会引起不稳定和EMI问题。

具有软恢复特性的快速恢复二极管是更好的选择。

标准60 Hz二极管(例如1N4001或1N5400等)也不适用。

肖特基和软快速恢复二极管选择指南,请参见表3。

Application Information (continued)
8.1.6 Output Voltage Ripple and Transients
开关电源的输出电压包含开关频率处的锯齿波纹电压,通常约为输出电压的1%,并且在锯齿波的峰值处还可能包含短电压尖峰。

输出纹波电压主要归因于电感器锯齿形纹波电流乘以输出电容器的ESR(请参阅“电感选择”部分)。

由于输出开关的快速开关动作以及输出滤波电容器的寄生电感,会出现电压尖峰。

为了减小这些电压尖峰,可以使用特殊的低电感电容器,并且其引线长度必须保持较短。

接线电感,杂散电容和用于评估这些瞬态的示波器探头都会影响这些尖峰的幅度。

可以在输出端增加一个额外的小型LC滤波器(20μH和100μF)(如图23所示),以进一步减少输出纹波和瞬变量。

使用该滤波器可以将输出纹波电压和瞬态降低10倍。

8.1.7 Feedback Connection
LM2576(固定电压版本)反馈引脚必须连接到开关电源的输出电压点。

使用可调版本时,请在LM2576附近物理放置两个输出电压编程电阻,以免拾取有害的噪声。

避免使用大于100kΩ的电阻,因为这样会增加噪声吸收的机会。

8.1.8 ON/OFF INPUT
For normal operation, the ON/OFF pin must be grounded or driven with a low-level TTL voltage (typically below 1.6 V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The ON/OFF pin can be safely pulled up to +V IN without a resistor in series with it. The ON/OFF pin must not be left open.
8.1.9 Inverting Regulator
图24显示了buck-boost配置的LM2576-12,可从正输入电压产生负12V输出。

该电路将稳压器的接地引脚自举
到负输出电压,然后通过将反馈引脚接地,稳压器感测反相的输出电压并将其调节至-12V。

对于12 V或更高的输入电压,此配置中的最大可用输出电流约为700 mA。

在较轻的负载下,所需的最小输入电压降至约4.7V。

该降压-升压配置中的开关电流高于标准的降压模式设计,从而降低了可用的输出电流。

此外,降压-升压转换器的启动输入电流高于标准的降压型稳压器,并且可能使输入电源过载,电流限制小于
5 A.使用延迟开启或欠压锁定电路(在负升压稳压器部分中描述)可以使输入电压上升到足够高的水平,然后才允许开关打开。

由于降压和降压-升压调节器拓扑之间的结构差异,因此降压调节器设计过程部分不能用于选择电感器或输出电容器。

降压-升压设计的推荐电感值范围在68μH至220μH之间,并且输出电容器的值必须大于降压设计通常所需
的值。

低输入电压或高输出电流需要一个大容量输出电容器(以数千微法拉为单位)。

电感峰值电流与开关峰值电流相同,可通过公式4计算:
where
• f osc = 52 kHz(4) Under normal continuous inductor current operating conditions, the minimum V IN represents the worst case. Select an inductor that is rated for the peak current anticipated.
Application Information (continued)
+12 To +45 V
Feedback
Unregulated
DC Input +V IN
4
LM2576HV-ADJ
Output
L1 + 1
C IN
2
68 µH
100 …F
3
GND 5 ON/OFF
+
C OUT
D1
2200 …F
1N5822
-12 @ 0.7 A
REGULATED
DC INPUT
Figure 24. Inverting Buck-Boost Develops −12 V
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage.
For a −12-V output, the maximum input voltage for the LM2576 is +28 V, or +48 V for the LM2576HV.
8.1.10 Negative Boost Regulator
Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 25 accepts an input voltage ranging from −5 V to −12 V and provides a regulated −12-V output. Input voltages greater than −12 V causes the output to rise above −12 V, but does not damage the regulator.
Feedback
+
V IN
C OUT
LM2576-12
4
2200 P F
1 Output
LOW ESR
2
+
C IN 3 5 1N5820
GND
ON/OFF
100 P F
V OUT = -12 V
-V IN
100 P H
-5 V to -12 V
Typical Load Current
400 mA for V IN = −5.2 V 750 mA for V IN = −7 V Heat sink may be required.
Figure 25. Negative Boost
Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators cannot provide current-limiting load protection in the event of a shorted load, so some other means (such as a fuse) can be necessary.
8.2 Typical Applications
8.2.1 Fixed Output Voltage Version
Feedback
+V IN
LM2576HV-4V OUT
1
Fixed Output Output L1
V IN
+
2100 µH
+
100 …F L
UNREGULATED
5
GND3C OUT O DC INPUT ON/OFF
C IN D11000 µF A
MBR360D
C IN— 100-μF, 75-V, Aluminum Electrolytic
C OUT— 1000-μF, 25-V, Aluminum Electrolytic
D1— Schottky, MBR360
L1— 100 μH, Pulse Eng. PE-92108
R1— 2 k, 0.1%
R2— 6.12 k, 0.1%
Figure 26. Fixed Output Voltage Versions
8.2.1.1 Design Requirements
Table 1 lists the design parameters of this example.
Table 1. Design Parameters
DESIGN PARAMETER EXAMPLE VALUE
Regulated Output Voltage
5 V
(3.3 V, 5 V, 12 V, or 15 V), V OUT
Maximum Input Voltage, V IN(Max)15 V
Maximum Load Current,
3 A
I LOAD(Max)
8.2.1.2Detailed Design Procedure
8.2.1.2.1 Custom Design with WEBENCH Tools
单击此处使用WEBENCH®Power Designer创建自定义设计。

1.首先输入您的VIN,VOUT和IOUT要求。

2.使用优化器转盘针对诸如效率,占地面积和成本之类的关键参数优化设计,并将该设计与德州仪器(TI)的其他可能解决方案进行比较。

3.WEBENCH Power Designer为您提供了定制的原理图以及具有实时定价和组件可用性的材料清单。

4.在大多数情况下,您还可以:
–进行电气仿真,以查看重要的波形和电路性能,
–运行热仿真以了解您的板的热性能,
–将自定义的原理图和布局导出为流行的CAD格式,
–打印设计的PDF报告,并与同事共享您的设计。

8.2.1.2.2 Inductor Selection (L1)
1. Select the correct Inductor value selection guide from Figure 27, Figure 28, Figure 29, or Figure 30. (Output
voltages of 3.3 V, 5 V, 12 V, or 15 V, respectively). For other output voltages, see the design procedure for the adjustable version. Use the selection guide shown in Figure 28.
2. From the inductor value selection guide, identify the inductance region intersected by V IN(Max) and
I LOAD(Max), and note the inductor code for that region. From the selection guide, the inductance area
intersected by the 15-V line and 3-A line is L100.
3. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in
Figure 27.Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of 1.15 × I LOAD. For additional inductor information, see the Inductor Selection section. Inductor value required is 100 μH from the table in Figure 27.Choose AIE 415-0930, Pulse Engineering PE92108, or Renco RL2444.
8.2.1.2.3Output Capacitor Selection (C OUT)
1. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching
regulator loop. For stable operation and an acceptable output ripple voltage, (approximately 1% of the output voltage) TI recommends a value between 100 μF and 470 μF. C OUT = 680-μF to 2000-μF standard aluminum electrolytic was chosen.
2. The voltage rating of the capacitor must be at least 1.5 times greater than the output voltage. For a 5-V
regulator, a rating of at least 8 V is appropriate, and a 10-V or 15-V rating is recommended. Capacitor voltage rating = 20 V. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason, it can be necessary to select a capacitor rated for a higher voltage than would normally be needed.
8.2.1.2.4 Catch Diode Selection (D1)
1. The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the
power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2576. The most stressful condition for this diode is an overload or shorted output condition. For this example, a 3-A current rating is adequate.
2. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Use a 20-V
1N5823 or SR302 Schottky diode, or any of the suggested fast-recovery diodes shown in Table 3.
8.2.1.2.5Input Capacitor (C IN)
An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation. A 100-μF, 25-V aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.
8.2.2 Application Curves
Figure 27. LM2576(HV)-3.3Figure 28. LM2576(HV)-5.0
Figure 29. LM2576(HV)-12Figure 30. LM2576(HV)-15
Figure 31. LM2576(HV)-ADJ
8.2.3 Adjusted Output Voltage Version
Feedback
+V IN
LM2576HV-4V
OUT
ADJ Output L1
1
5 V
7 V ± 60 V
+
2100 µH
+
100 …F R2
UNREGULATED
5L
GND3C OUT
DC INPUT ON/OFF O
C IN D11000 µF
A
MBR360
R1D
where
V REF = 1.23 V, R1 between 1 k and 5 k
Figure 32. Adjustable Output Voltage Version
8.2.3.1 Design Requirements
Table 2 lists the design parameters of this example.
Table 2. Design Parameters
DESIGN PARAMETER EXAMPLE VALUE
Regulated Output Voltage, V OUT 10 V Maximum Input Voltage, V IN (Max)
25 V Maximum Load Current,
3 A
I LOAD (Max)
Switching Frequency, F Fixed at 52 kHz
8.2.3.2 Detailed Design Procedure
8.2.3.2.1 Programming Output Voltage
Select R1 and R2, as shown in Figure 32. Use Equation 5 to select the appropriate resistor values.
(5)
R 1 can be between 1 k and 5 k. (For best temperature coefficient and stability with time, use 1% metal film resistors) (6)
(7)
R 2 = 1 k (8.13 − 1) = 7.13 k, closest 1% value is 7.15 k
8.2.3.2.2 Inductor Selection (L1)
1. Calculate the inductor Volt • microsecond constant, E × T (V × μs), from Equation 8:
E u TV IN V OUT
V
OUT
u
1000
V u V
V
IN F IN K H Z
(8)
2. Calculate E × T (V × μs):
E u T 25 10 u 10 u 1000 115 V u V
25 52 (9)
3. Use the E • T value from the previous formula and match it with the E × T number on the vertical axis of the
inductor value selection guide shown in Figure 31. E × T = 115 V × μs
(10) 4. On the horizontal axis, select the maximum load current.
I LOAD (Max) = 3 A (11)
5. Identify the inductance region intersected by the E × T value and the maximum load current value. Note the
inductor code for that region. Inductance Region = H150
6. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in
Table 4. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of 1.15 × I LOAD . For additional inductor information, see the Inductor Selection section. Inductor Value = 150 μH. Choose from AIE part #415-0936, Pulse Engineering part #PE-531115, or Renco part #RL2445.
8.2.3.2.3 Output Capacitor Selection (C OUT )
1. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching
regulator loop. For stable operation, the capacitor must satisfy :
C OUT t 13,300
V
IN M AX
) V OUT u L +
yields capacitor values between 10 μF and 2200 μF that satisfies the loop requirements for stable operation. To achieve an acceptable output ripple voltage, (approximately 1% of the output voltage) and transient response, the output capacitor may need to be several times larger than yields.
COUT t 13,300
25
22.2 ) 10 u 150
However, for acceptable output ripple voltage select:
C OUT≥ 680 μF
C OUT = 680-μF electrolytic capacitor
2. The voltage rating of the capacitor must be at last 1.5 times greater than the output voltage. For a 10-V
regulator, a rating of at least 15 V or more is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason, it can be necessary to select a capacitor rate for a higher voltage than would normally be needed.
8.2.3.2.4 Catch Diode Selection (D1)
1. The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the
power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2576. The most stressful condition for this diode is an overload or shorted output. See Table 3. For this example, a 3.3-A current rating is adequate.
2. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Use a 30-V
31DQ03 Schottky diode, or any of the suggested fast-recovery diodes in Table 3.
8.2.3.2.5Input Capacitor (C IN)
An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation. A 100-μF aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.
Table 3. Diode Selection Guide
(1) Schott Corporation, (612) 475-1173, 1000 Parkers Lake Road, Wayzata, MN 55391.
(2) Pulse Engineering, (619) 674-8100, P.O. Box 12235, San Diego, CA 92112.
(3) Renco Electronics Incorporated, (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729.
9Power Supply Recommendations
像在任何开关稳压器中一样,布局非常重要。

与布线电感相关的快速开关电流会产生瞬态电压,这可能会引起问题。

为了使电感和接地环路最小,用粗线表示的引线长度必须尽可能短。

为了获得最佳效果,必须使用单点接地(如图所示)或接地平面结构。

当使用可调版本时,应将编程电阻器实际放置在调节器附近,以使敏感反馈布线短。

10Layout
10.1 Layout Guidelines
电路板布局对于开关电源的正常运行至关重要。

首先,接地平面面积必须足够用于散热。

其次,必须遵循适当的准则以减少开关噪声的影响。

开关模式转换器是非常快速的开关设备。

在这种情况下,输入电流的快速增加与寄生走线电感的组合会产生有害的L di / dt噪声尖峰。

随着输出电流的增加,这种噪声的幅度趋于增加。

这种噪声可能会变成电磁干扰(EMI),也可能导致设备性能出现问题。

因此,请注意布局以最小化此开关噪声的影响。

最重要的布局规则是保持交流电流环路尽可能小。

图33显示了降压转换器中的电流。

顶部示意图显示了一条虚线,该虚线代表顶部开关导通状态期间的电流。

中间的示意图显示了在顶部开关断开状态期间的电流。

底部示意图显示了称为交流电流的电流。

这些交流电流是最关键的,因为它们会在很短的时间内变化。

底部原理图的虚线是保持尽可能短和宽的迹线。

这也会产生较小的环路面积,从而减小环路电感。

为避免布局引起的功能问题,请查看PCB布局示例。

如图34所示,如果放置LM2576器件,旁路电容器,肖特基二极管,RFBB,RFBT和电感器,则可获得最佳结果。

TI还建议使用2盎司或更厚的铜板以帮助散热。

并减少板走线的寄生电感。

有关更多信息,请参见AN-1229 SIMPLESWITCHER®PCB布局指南应用报告。

Figure 33. Current Flow in Buck Application。

相关文档
最新文档