设计微弱电阻测量仪

设计微弱电阻测量仪
设计微弱电阻测量仪

基于51单片机的数字电容测量仪设计说明

电子系统设计创新与实习报告 设计课题基于单片机的电容测量仪设计 学院信息科学与工程 学生姓名 学号 专业班级 队友 指导教师 设计时间2014.6.4-2014.7.3

本设计详细介绍了一种基于单片机的数字式电容测量仪设计方案及实现方法。设计的主要方法是采用555芯片构成单稳态触发器,将电容容量转换为脉冲宽度。通过单片机的计时器测量脉宽, 根据已知的R值,通过单片机的运算功能,计算出电容容量,最后,再通过单片机的普通I/O口控制液晶屏显示出电容容量的计算结果。系统的测量范围为10pF~ 500uF, 具有多个量程,可根据用户需要由用户选择,与用户的交互是通过键盘实现,不同量程的实现是通过单片机的I/O口控制继电器的吸合与断开来选择不同的R值,从而实现不同的量程。同时,本设计注重设计方法及流程,首先根据原理设计电路,再通过protues 仿真,利用keil编程,进而借助altium designer 制作PCB,最后到焊接元器件,调试直至成功。

1 系统方案设计 1.1 设计说明及要求 1.1.1 设计说明 框图中的外接电容是定时电路中的一部分。当外接电容的容量不同时,与定时电路所对应的时间也有所不同,即C=f(t),而时间与脉冲数目成正比,脉冲数目可以通过计数译码获得。 1.1.2 设计要求 (1)基本要求 ①自制稳压电源。 ②被测电容的容量在10pF至10000μF范围内 ③设计四个的测量量程。 ④显示测量结果,测量误差小于2.5%。 数字显示:显示分辨率:每档满量程的0.1%; 电容测量:电压可选择5V,25V,50V; 为实现该设计,达到相应的设计要求,本次设计中考虑了三种设计方案,三种设计方案中主要区别在于硬件电路和软件设计的不同,对于本设计,三种方案均能够实现,最后根据设计要求、可行性和设计成本的考虑选择了基于STC89C52单片机和555芯片构成的单

《电阻的测量》教案设计

《电阻的测量》教案设计 一、教学目标 【知识与技能】 加深对欧姆定律及其应用的理解,知道测量电阻的原理。 【过程与方法】 通过进行伏安法测量电阻的实验,进一步掌握使用电压表和电流表的方法,学会用伏安法测量电阻。 【情感态度与价值观】 通过做伏安法测电阻的实验并观察试验现象分析结果,培养动手能力和实验设计能力,并养成求真务实、细致严谨的科学态度。 二、教学重难点 【重点】 根据实验原理设计电路图,并且能用滑动变阻器来改变待测电阻两端的电压。 【难点】 组装电路,分析实验,发现规律,以及对电阻概念的理解认识。 三、教学过程 环节一:新课导入 问题引入:如何测定一个定值电阻的大小?先引导学生回顾上一节所学的欧姆定律的知识,然后得出根据欧姆定律的变形公式 ,通过测量通过电阻的电流以及电阻两端的电压得出定值电阻的电阻值的方法。

环节二:新课讲授 设计实验 已经讨论出了实验原理和实验方法,即测量电流和电阻根据公式 得出电阻值。但为了减少实验误差,实际测量中要改变待测电阻两端的电压,多次测量电压以及电流的值,求出每次的电阻值,最后求出电阻的平均数。其中串联一个滑动变阻器,移动滑片,就可以改变定值电阻两端的电压和流过的电流。电路图如图所示: 所用器材有:电源、开关、定值电阻、滑动变阻器、电流表、电压表、导线若干。 进行实验 首先,根据电路图连接电路。在连接电路过程中要指导学生在实验过程注意哪些问题,比如,连接电路时,开关应处在断开状态;闭合开关前检查滑动变阻器是否处于阻值最大处;电压表电流表的支付接线柱的正确连接等。且应该提醒学生通过“试触”进行测量工具量程的选择,在闭合开关前仔细检查电路连接情况。在学生连接完电路后,应该检查学生的电路连接情况,确保电路连接没有问题。其次,闭合开关,通过移动滑动变阻器的滑片来改变待测电阻两端的电压,注意应提醒学生不能将滑动变阻器调节的太狠,也不能超过测量工具的量程,并且指导学生设计表格将所测量的数据记录在表格中。 最后,断开开关,整理器材,收拾仪器,结束实验。 分析实验,得出结论 让学生利用记录在表格中的数据以及公式,计算出不同电压电流情况下定值电阻的阻值,并求出平均值,各组同学互相讨论看看其他组得到的结果,分析实验结论。 根据所做的实验,可以看出,在各个电压下测量的阻值变化不大,且与平均值较为接近。当定值电阻两端的电压改变时,通过它的电流也随之改变,但

基于单片机电阻电容电感测试仪

1 前言 1.1 设计的背景及意义 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电阻,电容,电感的大小。因此,设计可靠,安全,便捷的电阻,电容,电感测试仪具有极大的现实必要性。 通常情况下,电路参数的数字化测量是把被测参数传换成直流电压或频率后进行测量。 电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。 传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。 电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 因为测量电阻,电容,电感方法多并具有一定的复杂性,所以本次设计是在参考555振荡器基础上拟定的一套自己的设计方案。是尝试用555振荡器将被测参数转化为频率,这里我们将RLC的测量电路产生的频率送入AT89C52的计数端端,通过定时并且计数可以计算出被测频率再通过该频率计算出各个参数。 1.2 电阻、电容、电感测试仪的发展历史及研究现状 当今电子测试领域,电阻,电容和电感的测量已经在测量技术和产品研发中应用的十分广泛。 电阻、电容和电感测试发展已经很久,方法众多,常用测量方法如下。电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 在我国1997年05月21日中国航空工业总公司研究出一种电阻、电容、电感在线测量方法及装置等电位隔离方法,用于对在线的电阻、电容、电感元件实行等电位隔离,其特征在于,(1>将一个运算放大器的输出端与其反相输入端直接连接,形成一个电压跟

接地电阻测量仪使用方法

接地电阻测量仪使用方法 (1)准备工作 1)熟读接地电阻测量仪的使用说明书,应全面了解仪器的结构、性能及使用方法。 2)备齐测量时所必须的工具及全部仪器附件,并将仪器和接地探针擦拭干净,特别是接地探针,一定要将其表面影响导电能力的污垢及锈渍清理干净。 3)将接地干线与接地体的连接点或接地干线上所有接地支线的连接点断开,使接地体脱离任何连接关系成为独立体。 (2)测量步骤 1)将两个接地探针沿接地体辐射方向分别插入距接地体20m、40m的地下,插人深度为400mm,如图a所示。 图接地电阻测量仪操作示意

a)实际操作 b)等效原理 2)将接地电阻测量仪平放于接地体附近,并进行接线,接线方法如下: ①用最短的专用导线将接地体与接地测量仪的接线端“E1”(三端钮的测量仪)或与C2、”短接后的公共端(四端钮的测量仪)相连。 ②用最长的专用导线将距接地体40m的测量探针(电流探针)与测量仪的接线钮“C1”相连。 ③用余下的长度居中的专用导线将距接地体⒛m的测量探针(电位探针)与测量仪的接线端“P1”相连。 3)将测量仪水平放置后,检查检流计的指针是否指向中心线,否则调节“零位调整器”使测量仪指针指向中心线。 4)将“倍率标度”(或称粗调旋钮)置于最大倍数,并慢慢地转动发电机转柄(指针开始偏移),同时旋动“测量标度盘”(或称细调旋钮)使检流计指针指向中心线。 5)当检流计的指针接近于平衡时(指针近于中心线)加快摇动转柄,使其转速达到120r/min以上,同时调整“测量标度盘”,使指针指向中心线。 6)若“测量标度盘”的读数过小(小于1)不易读准确时,说明倍率标度倍数过大。此时应将“倍率标度”置于较小的倍数,重新调整“测量标度盘”使指针指向中心线上并读出准确读数。 7)计算测量结果,即R地=“倍率标度”渎数ד测量标度盘”读数。

基于单片机电容测量仪设计

摘要 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小。在电子产品的生产和维修中,电容测量这一环节至关重要,因此,设计可靠,安全,便捷的电容测试仪具有极大的现实必要性。本文提出了以MCS-51单片机为控制核心,结合多谐振荡器来实现电容测量的方法。并介绍了测量原理并给出了相应的电路及软件设计。 关键词:电容测试仪;单片机;测量

目录 1概述 (1) 1.1 设计目的和意义 (1) 1.2 设计任务与要求 (1) 2 硬件电路设计及其描述 (1) 2.1 设计方案 (1) 2.2 原理框图 (2) 2.3 基于A T89C51电容测量系统硬件设计详细分析 (2) 2.3.1 A T89C51单片机工作电路 (2) 2.3.2 基于A T89C51电容测量系统复位电路 (3) 2.3.3 基于A T89C51电容测量系统时钟电路 (4) 2.3.4 基于A T89C51电容测量系统按键电路 (4) 2.3.5 基于A T89C51电容测量系统555芯片电路 (5) 2.3.6 基于A T89C51电容测量系统显示电路 (6) 2.4 各部分电路连接成整个电路图 (9) 2.5 系统所用元器件 (10) 2.6 PCB制图 (11) 3 软件流程及程序设计 (11) 3.1 系统模块层次结构图 (11) 3.2 程序设计算法设计 (12) 3.3 软件设计流程 (13) 3.4 源程序代码 (13) 4 系统调试及仿真 (17) 5 总结 (16) 5.1 本系统存在的问题及改进措施 (16) 5.2 心得体会 (18) 参考文献 (19)

《电阻的测量》教学设计完整版本

课题电阻的测量执教:赵文明协备:吴雨婷九一班时间: 教 学 目 标 一、知识与技能 1. 知道用电流表和电压表测电阻的原理。 2. 会同时使用电流表和电压表测量导体的电阻。 3. 了解灯丝电阻的特性。 4.理解滑动变阻器在电路中的作用。 二、过程与方法 1. 通过测量小灯泡的电阻,了解欧姆定律的应用。 2. 通过学生选择实验仪器,设计实验,制定实验操作步骤,培养学生的观察、正确读数、数 据处理和分析能力。 三、情感态度与价值观 1. 在实验电路的设计、连接以及测量过程中培养学生学习物理的兴趣,小组成员之间相互协 作的团队精神。 2. 通过本次实验,激发学生学习的积极性和探索未知世界的热情,在实验中注意养成严谨的 科学态度。 重点利用电流表、电压表测小灯泡的电阻。 难点设计科学的、完整的实验操作方案。 教学 方法 实验探究、自主学习、交流讨论。 教具电池组、电压表、电流表、2.5V小灯泡、开关、滑动变阻器、导线若干、投影仪、多媒体课件 教学过程 引入教师活动学生活动设计意图

课 讲授实验电路图和实物图: 电路图 实物图 实验记录表格 测量次数电压U/V 电流I/A 电阻R/Ω 1 2 3 注意事项 1.在连接电路前要调节电流表、电压表 到零刻度。 2.连接电路时开关要断开,连接完电路 要调节滑动变阻器到阻值最大端。 3.连接好电路,在检查电路连接无误后 要用开关试触,在确定电路完好后再闭合 开关S。 4.电压表和电流表要注意选择适当的量 程。 二、例题分析 例1 (小宣用伏安法测量电阻R的阻值 时,并联在电阻R两端的电压表的示数如 图甲所示,与电阻R串联的电流表的示数 如图乙所示,则电压表的示数为 V, 电流表的示数为 ________A,电阻R 的阻值为Ω。 例 2 某同学用伏安法测小灯泡的电阻, 下表为记录的实验数据,从中你发现了什 么?说明原因。 电路图:要求学生自己设计 实物图:要求学生根据电路图连接实 物图 将测量的数据记录在表格上: 然后根据记录的数据计算出电阻,再 取平均值 想想做做 1.将上述实验中的定值电阻换成小灯 泡,用同样的方法测定小灯泡的电阻。 2.多测几组数据,根据实验数据分别 计算出小灯泡的电阻, 3.比较计算出的几个数值,看看每次 算出的电阻的大小相同吗?有什么变 化规律吗? 4.如果出现的情况和测量定值电阻时 不同,你如何解释?与同学交流一下。 法和学生动 手实验的能 力 培养学生自 主学习的方 法和学生动 手实验的能 力 培养学生的 解题能力, 思考能力

接地电阻测量仪知识

接地电阻测试电仪知识 1.定义 地电流:在大地或在接地极中流过的电流。 接地导体:指构成地的导体,该导体将设备、电气器件、布线系统、或其他导体(通常指中性线)与接地极连接。 接地极:构成地的一种导体。 接地连接:用来构成地的连接,系由接地导体、接地极和围绕接地极的大地(土壤)或代替大地的导电体组成。 接地网:由埋在地中的互相连接的裸导体构成的一组接地极,用以为电气设备和金属结构提供共同地。 接地系统:在规定区域内由所有互相连接的多个接地连接组成的系统。 接地极地电阻:接地极与电位为零的远方接地极之间的欧姆律电阻。(注:所谓远方是指一段距离,在此距离下,两个接地极互阻基本为零。) 接地极互阻:指以欧姆为单位表示的,一个接地极1A直流电流变量在另一接地极产生的电压变量。 电位:指某点与被认为具有零电位的某等电位面(通常是远方地表面)间的电位差。 接触电压:接地的金属结构和地面上相隔一定距离处一点间的电位差。此距离通常等于最大的水平伸臂距离,约为1m。 跨步电压:地面一步距离的两点间的电位差,此距离取最大电位梯度方向上1m的长度。(注:当工作人员站立在大地或某物之上,而有电流流过该大地或该物时,此电位差可能是危险的,在故障状态时尤其如此) 接地极(架空线防雷保护用):指一个导体或一组导体,装设在输电线路下方,位于地面或地面上方,但绝大多数在地下,并与铁塔或电杆基础相连。 土壤电阻率:是指一个单位立方体的对立面之间的电阻,通常以Ω?m或Ω?cm为单位。 2.在测接地电阻时,有哪些因素造成接地电阻不准确,如何避免?

A)接地系统(地网)周边土壤构成不一致,地质不一,紧密、干湿程度不一样,具有分散性,地表面杂散电流、特别是架空地线、地下水管、电缆外皮等等,对测试影响特别大。解决的方法是,取不同的点进行测量,取平均值。 B)测试线方向不对,距离不够长,解决的方法是,找准测试方向和距离。 C)辅助接地极电阻过大。解决的方法是,在地桩处泼水或使用降阻剂降低电流极的接地电阻。 D)测试夹与接地测量点接触电阻过大。解决的方法是,将接触点用锉刀或砂纸磨光,用测试线夹子充分夹好磨光触点。 E)干扰影响。解决的方法,调整放线方向,尽量避开干扰大的方向,使仪表读数减少跳动。 F)仪表使用问题。电池电量不足,解决的方法是,更换电池。仪表精确度下降,解决的方法是,重新校准为零。 3.在测高层建筑物接地时,阻值为什么会比地面阻值大。且显示数据跳动严重,是什么原因造成的,如何避免? 这是因为高层建筑测量时,高层建筑物接地引线与地之间存在着一定的阻值(R地线)另外从高层建筑物上面测量点向地面仪表所引接的测试线,在空中的部分存在线电感。(WL)所以高层建筑接地点测量的阻值为R=R地线+WL+R地。地面测量接地电阻R=R地。 测量数据比地面测量时跳动要严重,这是因为测试线在空中的加长,如同一根天线将空中一些无线电、电磁杂波等信号通过测试线引向仪表,而产生严重干扰,使测量数据跳动,解决的方法是,用一根同轴线作为测试引线,将同轴线和芯线连接在一起,并接在测试点上。将同轴线另一端的屏蔽线接在仪表的C2端上(即电流极),将同轴线的芯线接在仪表P2端上(即电压极),这样能较好地解决测量高层接地电阻由于引线过长造成干扰影响。 4.为什么在测接地电阻时,要求测量线分别为20m和40m,它与钳形地阻表有什么区别? 这是因为测接地电阻时,要求测的是接地极与电位为零的远方接地极之间的电阻,所谓远方是指一段距离,在此距离下,两个接地极的互阻基本为零,经实验得出,20m以外距离符合此要求。如果线距缩短,测量误差会逐渐加大。 钳形地阻表只能测量多点接地,测量结果是,被测地极与多个接地极并联值的和,而测量单点接地时要接辅助电极,使测试电路形成回路,所以测量误差要大一些。但操作方便。 5.被保护的电器设备的接地端是否可以不断开测试,对测试仪表或被保护电器设备有什么影响?

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计报告 摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。测量结果采用12864液晶模块实时显示。实验测试结果表明,本系统性能稳定,测量精度高。 关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量 一、设计内容及功能 1.1设计内容 设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示: 测量对象 LCD显示 电阻/电容/电感 简易的数字电阻、电容和电感测量仪 自制电源 1.2 具体要求 1. 测量范围 (1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 (2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。 2. 测量精度 (1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。 (2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。 3. 利用128*64液晶显示器,显示测量数值、类型和单位。 4. 自制电源 5. 使用按键来设置测量的种类和单位 1.3系统功能 1. 基本完成以上具体要求 2. 使用三个按键分别控制R、C、L的测试 3. 采用液晶显示器显示测量结果 二、系统方案设计与选择 电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。在设计前本文对各种方案进行了比较:

数字式电阻测量仪(完整版)

单片机原理及应用课程设计报告 设计题目:数字式电阻测量仪 学院 专业 班级 姓名 学号 指导教师申明 2011 年秋季学期

摘要 本设计电阻测量是利用A/D转换原理,将被测模拟量转换成数字量,并用数字方式显示测量结果的电子测量仪表。通常测量电阻都采用大规模的A/D转换集成电路,测量精度高,读数方便,在体积、重量、耗电、稳定性及可靠性等方面性能指标均明显优于指针式万用表。其中,A/D转换器将输入的模拟量转换成数字量,逻辑控制电路产生控制信号,按规定的时序将A/D转换器中各组模拟开关接通或断开,保证A/D 转换正常进行。A/D转换结果通过计数译码电路变换成ASCII码,最后驱动显示器显示相应的数值。本系统以单片机AT89C51为系统的控制核心,结合A/D转换芯片 AT89C51设计一个电阻测量表,能够测量一定数值之间的电阻值,通过LCD液晶显示。具有读数据准确,测量方便的特点。 关键词:单片机(AT89C51);电压;A/D转换;TLC548

目录 设计要求 (1) 1 电路的论证与对比 (1) 1.1 方案一 (1) 1.2 方案二 (2) 1.3 方案的对比与比较 (2) 2 系统硬件电路设计 (2) 2.1 CPU时钟 (2) 2.2 A/D转换电路模块 (2) 2.2.1主要性能 (3) 2.2. 2 TLC548芯片的组成原理.................. 错误!未定义书签。 2.2.3 TLC548引脚功能 (5) 2.3 主控芯片AT89C51模块 (5) 2.3.1主要功能特性 (6) 2.3.2 主要引脚功能 (7) 2.4 显示控制电路的设计及原理 (9) 3程序设计 (10) 3.1 初始化程序 (10) 3.2主程序 (10) 3.3显示子程序 (11) 3.4 A/D转换测量子程序 (144) 4系统调试与分析 (15) 5元器件清单 (17) 6 总结与致谢 (17) 7 参考文献 (18) 附一:原理图 ............................................................

接地电阻测试仪测量方法详细介绍

目前,市场上存在的接地电阻测试仪有成百上千种,有进口的也有国产的,归纳起来,其测量方法只有三类:打地桩法、钳夹法、地桩与钳夹结合法。 一、打地桩法:地桩法可分为二线法、三线法和四线法 1.二线法:这是最初的测量方法:即将 一根线接在被测接地体上,另一根接辅助地极。此法的测量结果R=接地电阻+地桩电阻+引线及接触电阻,所以误差较大,现已一般不用。 2.三线法:这是二线法的改进型,即采用两个辅助地极,通过公式计算,在中间一根辅助地极在总长的0.62倍时,可基本消除由于地桩电阻引起的误差;现在这种方法仍然在用。但是此法仍不能消除由于被测接地体由于风化锈蚀引起接触电阻的误差。 3. 四线法:这是在三线法基础上的改进法。这种方法可以消除由于辅助地极接地电阻、测试引线及接触电阻引起的误差。 二、钳夹法:钳夹法分为单钳法和双钳法 1.双钳法:利用在变化磁场中的导体会产生感应电压的原理,用一个钳子通以变化的电流,从而产生交变的磁场,该磁场使得其内的导体产生一定的感应电压,用另一个钳子测量由此电压产生的感应电流,最后用欧姆定律计算出环路电路值。其适用条件一是要形成回路,二是另一端电阻可忽略不计。 2. 单钳法: 单钳法的实质是将双钳法的两个钳子做成一体,但如果发生机械损伤,邻近的两个钳子难免相互干扰,从而影响测量精度。仪器选择:目前市场支持此种方法的仪器有法国CA公司的CA6415钳式接地电阻测试仪,还有华谊仪表的MS2301钳式接地电阻测试仪等,我公司支持此种方法的仪器是ET3000双钳多功能接地电阻测试仪。 三、地桩与钳夹结合法:这种方法又叫选择电极法这种方法的测量原理同四线法,由于在利用欧姆定律计算结果时,其电流值由外置的电流钳测得,而不是象四线法

基于单片机的电阻测量设计修改

基于单片机的电阻测量设计修改

1.设计目的及其意义 本设计基于单片机和AD转换器实现电阻的测量。采用ADC0809,实现由模拟电压转换到数字信号,通过单片机系统处理后,由LCD显示被测量电阻的阻值。测量范围为1Ω~5KΩ,精度大于98%。 2.方案设计 2.1 总体设计思路 本设计包括硬件和软件设计两个部分。模块划分为电压测量(数据采集)、模数转换、阻值显示等子模块。电路结构可划分为:电压测量,电压转换电阻,阻值显示及相关的控制管理软件组成。用户终端完成信息采集、处理、数据传送、显示等功能。 从设计的要求来分析该设计须包含如下结构:电压测量电路,电压转换电路,阻值显示电路、单片机及相关的控制软件组成;它们之间的构成框图如图1总体设计框图所示: 电压测电压 转换 电阻 AT89C 测量精

图1 总体设计框图 处理器采用51系列单片机AT89C51。整个系统是在系统软件控制下工作的。当测量一个电阻时,经过电压采集,电压转换为电阻,电阻显示三个部分可以在LCD上显示该被测电阻的阻值。当被测电阻为100Ω范围以内时,通过开关选择测量量程,再次测量该电阻,以减小误差。 2.2 具体电路模块设计 2.2.1 电压测量的设计 如图2所示为被测电阻电压测量。电压经过已知电阻R1和被测电阻Rx 接到地。通过OUT输出被测电阻Rx上的电压。送到ADC0809的IN0口。 图 2 被测电阻电压测量图

2.2.2 模数ADC转换的设计 由电压测量得到的电压经过ADC模数转换可得到8位的电压值,经过欧姆定律(即电压之比等于电阻之比)可得到被测电阻的阻值的大小。公式如下 本设计用到的R1的阻值为600Ω和300Ω。 由被测电阻得到的电压值经ADC0809的26脚IN0输入,经过内部的AD 转换,在OUT1~7输出数字电压量,经过上述公式的转变,在P2口上的显示的数字量为被测电阻的阻值数字量。如图3所示为被测电阻电压量转换为阻值量。 图 3 被测电阻电压量转换为阻值量图 2.2.3 液晶显示电路的设计 经过ADC0809模数转换得到的电阻值数字量,在MCU的P2口输入,MCU 系统处理后在P0口由LCD1602显示出来该被测电阻的阻值。如图4所示为被测电阻阻值显示。

简易电阻、电容和电感测试仪设计_毕业设计论文

课程设计任务书 题目: 简易电阻、电容和电感测试仪设计 初始条件: LM317 LM337 NE555 NE5532 STC89C52 TLC549 ICL7660 1602液晶 要求完成的主要任务: 1、测量范围:电阻 100Ω-1MΩ; 电容 100pF-10000pF; 电感 100μH-10mH。 2、测量精度:5%。 3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。 时间安排: 指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日

目录 摘要 (4) ABSTRACT (5) 1、绪论 (7) 2、电路方案的比较与论证 (7) 2.1电阻测量方案 (7) 2.2电容测量方案 (9) 2.3电感测量方案 (10) 3、核心元器件介绍 (12) 3.1LM317的介绍 (12) 3.2LM337的介绍 (13) 3.3NE555的介绍 (13) 3.4NE5532的介绍 (15) 3.5STC89C52的介绍 (17) 3.6TLC549的介绍 (18) 3.7ICL7660的介绍 (20) 3.81602液晶的介绍 (21) 4、单元电路设计 (23) 4.1直流稳压电源电路的设计 (24) 4.2电源显示电路的设计 (24) 4.3电阻测量电路的设计 (25) 4.4电容测量电路的设计 (26) 4.5电感测量电路的设计 (27) 4.6电阻、电容、电感显示电路的设计 (28) 5、程序设计 (29) 5.1中断程序流程图 (29) 5.2主程序流程图 (30) 6、仿真结果 (30) 6.1电阻测量电路仿真 (30) 6.2电容测量电路仿真 (31) 6.3电感测量电路仿真 (32) 7、调试过程 (33) 7.1电阻、电容和电感测量电路调试 (33) 7.2液晶显示电路调试 (33) 8、实验数据记录 (34)

毕业设计简易自动电阻测试仪

简易自动电阻测试仪 摘要 本设计根据题目要求制作一台简易自动电阻测试仪,能够测量100Ω、1kΩ、10k Ω、10MΩ四档不同的量程,并实现其中前三档的自动量程转换功能,同时自动显示小数点和单位。基于这些要求,经过讨论,决定利用555多谐振荡电路将电阻参数转化为频率,频率f是单片机很容易处理的数字量,一方面测量精度高,另一方面便于使仪表实现自动化,而且单片机构成的应用系统有较大的可靠性。通过输入单片机AT89C51控制继电器控制被测RC振荡电路频率的自动选择,输入输出控制采用键盘输入控制电路、LCD12864显示系统和报警控制电路组成,能很好的实现各个要求。单片机具有可编程性,硬件的功能描述可完全在软件上实现,另一方面便于使仪表实现自动化,设计时间短,成本低,可靠性高。 关键字:AT89C51单片机555多谐振荡电路继电器自动量程转换 Abstract The design on the basis of the subject demand produced a simple automatic resistance tester, capable of measuring 100 Omega Omega, 1K, 10K, 10M Omega Omega four profile at different range, and realizes the automatic conversion range before the third, while automatically display a decimal point and unit. Based on these requirements, after discussion, decided to use the 555 multivibrator circuit resistance parameters are transformed into frequency, frequency of F SCM is easily handled the digital quantity, a high measuring precision, on the other hand, so easy to realize automation of instrumentation, and chip microprocessor application system has higher reliability. Through the input of single-chip AT89C51 control relay to control the tested RC oscillating circuit frequency automatic selection, input / output control using the keyboard input control circuit, LCD12864 display system and an alarm control circuit, can achieve a very good all. Microcontroller having programmable, hardware description of the function can be completely realized in software, on the other hand, so easy to realize automation of instrumentation, short design time, low cost, high reliability. Keywords: single chip AT89C51 555 multivibrator circuit relay automatic range switching

接地电阻测试仪技术参数

接地电阻测试仪技术参数 一、产品概述 1、仪表工作原理 BY2571数字接地电阻测量仪摒弃传统的人工手摇发电工作方式,采用先进的中大规模集成电路,应用DC/AC变换技术将三端钮、四端钮测量方式合并为一种机型的新型接地电阻测量仪。 工作原理为由机内DC/AC变换器将直流变为交流的低频恒流,经过辅助接地极C和被测物E组成回路,被测物上产生交流压降,经辅助接地极P送入交流放大器放大,再经过检波送入表头显示。借助倍率开关,可得到三个不同的量限:0~2Ω,0~20Ω,0~200Ω。 2、仪表使用范围 本表适用于电力、邮电、铁路、通信、矿山等部门测量各种装置的接地电阻以及测量低电阻的导体电阻值;本表还可测量土壤电阻率及地电压。 3、仪表特点 ·结构上采用高强度铝合金作为机壳,电路上为防止工频、射频干扰采用锁相环同步跟踪检波方式并配以开关电容滤波器使仪表有较好的抗干扰能力。 ·采用DC/AC变换技术将直流变为交流的低频恒定电流以便于测量。 ·允许辅助接地电阻在0~2KΩ(R C),0~40KΩ(R P)之间变化,不致于影响测量结果。 ·本仪表不需人工调节平衡,3(1/2)位LCD显示,除测地电阻外,还可测低电阻导体电阻、土壤电阻率以及交流地电压。 ·如若测试回路不通表头显示“1”代表溢出,符合常规测量习惯。 二、主要技术指标 1、使用条件 环境温度:0℃~+45℃ 相对湿度:≤85%RH 2、测量范围及恒流值(有效值) 电阻:0~2Ω(10mA),2~20Ω(10mA),20~200Ω(1mA) 电压:AC 0~20V 3、测量精度及分辨率 精度:0~0.2Ω≤±3%±1d 0.2Ω~200Ω≤±2%±1d 1~20V≤±3%±1d 分辨率:0.001Ω、0.01Ω、0.1Ω、0.01V 4、辅助接地电阻及地电压引起的测量误差 ·允许辅助接地电阻R C(C1与C2之间)<1.8KΩ; (P1与P2之间)<40KΩ误差≤±5% R P

电容测试仪的设计

目录 1、设计指标 (3) 2、设计原理 (3) 2.1设计原理框图 (3) 2.2设计方案 (3) 2.3模块介绍 (4) 2.3.1 控制电路 (4) 2.3.2 时钟脉冲发生器 (4) 2.3.3 计数器和显示器 (6) 3、单元电路的设计 (6) 3.1多谐振荡器 (6) 3.2单稳态触发器 (8) 3.3.1整流电路采用直流稳压电源设计思路 (9) 3.3.2直流稳压电源的原理框图分析 (9) 3.3.3直流稳压电源特点 (10) 4、设计制作过程及整体电路图 (10) 4.1设计制作过程 (10) 4.2整体电路图 (11) 5、芯片介绍 (11) 5.1555芯片功能介绍 (11) 5.274LS192芯片介绍 (13) 总结 (14) 致谢 (15) 参考文献 (16)

1、设计指标 1.1 设计目的 (1) 掌握数字电容测试仪的构成、原理和设计方法。 (2) 掌握集成电路的使用方法。 1.2 基本要求 (1)电容测量范围为1000pF~10uF,输出应能直接显示其值,误差≤5%,电源电压为+5V。 (2)量程可切换,显示值能够标定。 (3)要求最终正确无误地完成全部电路设计,并具有一定先进性,对电路设计也应提出建议性意见并写出合格的课程设计说明书,圆满完成各项任务。 2、设计原理 2.1设计原理框图 图1.电容测试仪原理框图 2.2 设计方案 利用单稳态触发器或电容器充放电规律等,可以把被测电容的大小转换成脉冲宽窄,即控制脉冲宽度Tx 与Cx成正比。只要把此脉冲与频率固定不变的方波即时钟脉冲相与,便可得到计数脉冲,把计数脉冲送给计数器计数,然后再送给显示器显示。如果时钟脉冲的频率等参数合适,数字显示器显示的数字N便是电容Cx的大小。之所以选择该方案是考虑到这个方案不仅设计比较容易实现,而且更重要的是该方案设计出来的数字测试仪测量的结果比较精确。

单片机课程设计电阻测量(完整版)

课程设计报告课程名称:单片机课程设计 设计题目:电阻测量 院系:通信与控制工程系 专业:通信工程 班级: 学生姓名: 学号: 08409212 起止日期: 指导教师: 教研室主任:

摘要 本设计电阻测量是利用A/D转换原理,将被测模拟量转换成数字量,并用数字方式显示测量结果的电子测量仪表。通常测量电阻都采用大规模的A/D转换集成电路,测量精度高,读数方便,在体积、重量、耗电、稳定性及可靠性等方面性能指标均明显优于指针式万用表。其中,A/D转换器将输入的模拟量转换成数字量,逻辑控制电路产生控制信号,按规定的时序将A/D转换器中各组模拟开关接通或断开,保证A/D 转换正常进行。A/D转换结果通过计数译码电路变换成BCD码,最后驱动显示器显示相应的数值。本系统以单片机AT89C52为系统的控制核心,结合A/D转换芯片ADC0809设计一个电阻测量表,能够测量一定数值之间的电阻值,通过四位数码显示。具有读数据准确,测量方便的特点。 关键词:单片机(AT89C52);电压;A/D转换;ADC0809

目录 设计要求 (1) 1、方案论证与对比 (1) 1.1方案一 (1) 1.2方案二 (1) 1.3方案对比与比较................................... 错误!未定义书签。 2、系统硬件电路的设计 (2) 2.1振荡电路模块 (2) 2.2A/D转换电路模块 (3) 2.2.1主要性能 (3) 2.2.2 ADC0809芯片的组成原理 (4) 2.2.3 ADC0809引脚功能 (4) 2.3主控芯片AT89C52模块 (5) 2.3.1主要功能特性 (6) 2.3.2 主要引脚功能 (6) 2.4显示控制电路的设计及原理 (8) 3、程序设计 (9) 3.1初始化程序 (9) 3.2主程序 (10) 3.3显示子程序 (10) 3.4A/D转换测量子程序 (11) 4、调试及性能分析 (11) 4.1调试与测试 (11) 4.2性能分析 (12) 5、元件清单 (13) 6、总结与思考及致谢............................... 错误!未定义书签。参考文献. (13)

数字电容测量仪-课程设计

数字电子技术课程设计报告书 课题名称 数字电容测量仪的设计 姓 名 吴亚香 学 号 1212501-35 学 院 通信与电子工程学院 专 业 电子科学与技术 指导教师 张学军 2014年 6月 10 日 ※ ※※※※※※※※ ※※ ※※ ※※ ※ ※※ ※※※※※※ 2012级电子科学与技术专业 数字电子技术课程设计

数字电容测量仪的设计 1设计目的 (1)掌握multisim12仿真软件的应用技巧。 (2)掌握电容数字测量仪的设计组装与调试方法。 (3)熟悉相应的中大规模集成电路的使用方法,并掌握其工作原理。 2设计思路 本设计中用555振荡器产生一定周期的矩形脉冲作为计数器的CP脉冲也就是标准频率。同时把待测电容C转换成宽度为tw的矩形脉冲,转换的原理是单稳态触发器的输出脉宽tw与电容C成正比。把此脉冲作为闸门时间和标准频率脉冲相“与”,得到计数脉冲,该计数脉冲送计数—译码显示系统就可以得到电容量的数据。外部旋钮控制量程的选择。用计数器控制电路控制总量程。。 3设计过程 3.1设计框图

图1 数字电容测量仪原理图 3.2多谐振荡器电路的设计 振荡器是数字电容测量仪的核心,振荡器的稳定度以及其所产生的基准频率的稳定度决定了数字电容测量仪的准确度,通常选用石英晶振构成振荡电路。在要求不高的情况下可以选用555构成的多谐振荡器如果图2所示。 555组成多谐振荡器的工作原理如下: 接通电源Vcc后,Vcc经电阻R 1和R 2 对电容C充电,其电压U C 由0按指数 规律上升。当U C ≥2/3V CC 时,电压比较器C 1 和C 2 的输出分别为U C1 =0、U C2 =1,基 本RS触发器被置0,Q=0、Q’=1,输出U 0跃到低点平U oL 。与此同时,放电管V 导通,电容C经电阻R2和放电管V放电,电路进入暂稳态。随着电容C放电, Uc下降到Uc≤1/3Vcc时,则电压比较器C 1和C 2 的输出为U c1 =1、U c2 =0,基本RS 触 发器被置1,Q=1,Q’=0,输出U 0由低点平U oL 跃到高电平Uo H 。同时,因Q’=0, 放电管V截止,电源Vcc又经过电阻R 1和R 2 对电容C充电。电路又返回前一个 暂稳态。因此,电容C上的电压Uc将在2/3Vcc和1/3Vcc之间来回充电和放电,从而使电路产生了振荡,输出矩形脉冲,作为基准信号频率。555组成多谐振荡器输出波形如图3。 图2 555组成多谐振荡器 图3多谐振荡电路及输出波形 3.3 单稳态触发器电路的设计 单稳态触发器所产生波形用于控制计数,由555定时器组成的单稳触发器,它既为下级的多谐触发器提供输入脉冲,又为后面计数器开始计数提供信号脉

电阻测量的设计实验报告

佛山科学技术学院 实验报告 课程名称实验项目 专业班级姓名学号 指导教师成绩日期年月日

【实验目的】 1.掌握减小伏安法测量电阻的方法误差和仪表误差的方法; 2.根据测量不确定度的要求,合理选择电压表和电流表的参数; 3.根据给定实验仪器合理设计变形电桥电路(或电压补偿测量电路)测量电阻。 【实验仪器】 直流稳压电源、伏特表、毫安表、被测电阻、滑线变阻器(或电位器)2个、电阻箱2只、开关式保护电阻、开关。 【实验原理】 1.方法误差 根据欧姆定律,测出电阻R x 两端的电压U ,同时测出流过电阻R x 的电流I ,则待测电阻值为 I U R x = 测 (24-1) 通常伏安法测电阻有两种接线方式:电流表内接法和电流表外接法。由于电表内阻的存在,这两种方法都存在方法误差。 在内接法测量电路中(如图24-1所示),电流表的读数I 为通过电阻R x 的电流I x ,但电压表的读数U 并不是电阻R x 的两端电压U x ,而是U=U x +U A ,所以实验中测得的待测电阻阻值为 式中R A 是电流表的内阻。它给测量带来的相对误差为 x A x x R R R R R E = -= 内内 (24-2) 内接法测量待测电阻阻值的修正公式 A x R I U R -= 。 (24-3) 在外接法测量电路中(如图24-2所示),电压表的读数U 等于电阻R x 的两端电压 U x ,但电流表的读数I 并不是流过R x 的电流I x ,而是I=I x +I V ,所以实验中测得的待测电阻阻值为 式中R V 是电压表的内阻。它给测量带来的相对误差为 x V x x x R R R R R R E +-=-= 外外 (24-4) 外接法测量待测电阻阻值的修正公式 U IR UR R R R R R V V V V x -=-= 外外 (24-5) 比较 内E 、外E 的大小,可以得:当V A R R R x >,采用内接法测量电阻,会使外内E E <;当V A R R R x <,采用外接法测量电阻,会使外内E E >;当V A x R R R ≈时,则采用内接法和外接法测量电阻都可以。其中电流表的内阻R A 、电压表的内阻R V 由实验室给出。 图24-1 内接法 图24-2 外接法

电阻测量系统设计说明

《电子系统设计》课程设计题目:电阻测量系统设计

自动电阻测试仪 【摘要】本简易自动电阻测试仪具有手动四档及自动三档量程转换电阻测试功能,以单片机为控制核心,使用仪表运放来精确采集被测电阻两端电压,经过模数转换电路将模拟信号转换成数字信号,以便单片机进行处理。最后通过LCD12864液晶显示出结果,能自动显示小数点和单位;并且该装置具有电阻自动筛选和自动测量显示电位器变化曲线的功能。实验结果表明,本系统完全达到设计要求,多项指标优于题目要求。 【主要技术】(1) 通过编程来实现对电阻值的直接测量 (2) 12位A/D转换技术 (3) 量程转换技术 (4)液晶显示器的有效应用 (5)串并转换技术 (6) 通过单片机控制电机实现对电位器的自动控制 【关键词】模数转换;自动量程转换;INA114;电阻;MCU;液晶显示;

目录 一、系统方案 (4) 1.1 设计要求 (4) 1.1.1 任务 (4) 1.1.2 要求 (4) 1.2 总体方案 (5) 1.2.1 方案论证与比较 (5) 1.2.2系统组成 (5) 二、理论计算与电路分析 (6) 2.1 电阻测量原理 (6) 2.2.1测量电路 (6) 2.1.2基准电压电路 (7) 2.2 自动量程转换与筛选的设计 (7) 2.2.1 自动量程转换 (7) 2.2.2 筛选功能 (8) 2.3 电位器阻值变化曲线装置的设计 (8) 三、电路与程序设计 (8) 3.1 电路设计与分析 (8) 3.1.1 电源模块 (8) 3.1.2 测量及转换模块 (9) 3.1.3 控制显示模块 (10) 3.1.4 辅助装置 (10) 3.2 程序流程图设计 (11) 四、系统测试方案与结果 (13) 4.1 测试条件 (13) 4.2 测试方案 (13) 4.3 测试结果及分析 (13) 五、结论和系统特色 (14)

相关文档
最新文档