计量经济学课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WEEK 10: MACROECONOMETRICS Introduction
1.The concept of stationarity
2.Spurious regressions
3.Testing for unit roots
4.Cointegration analysis
1. S TATIONARITY
Conditions for t y to be a stationary time series process i. t E y constant t ii. t Var y constant t
iii. ,t t k Cov y y constant t and all k≠0 Autoregressive time series
1t t t y y
- Notice no constant and t is a white noise error term.
- AR(1) model – time series behaviour of t y is largely explained by its value in the previous period.
- Necessary condition for stationarity 1 , if , 1 series is explosive and if 1 have a unit root.
Example 1 – Stationary AR(1) Model
STATA code
set obs 500 /*set number of observations*/
gen time=_n /*create time trend*/
gen y=0 if time==1 /* first observation set y=0*/
gen e=rnormal(0, 1) /*create a random number*/
replace y=(0.67*y[_n-1])+e if time~=1 /*AR(1) model =0.67*/ twoway (line y time) /*line plot*/
Example 2 – Explosive AR(1) Model
STATA code
set obs 500 /*set number of observations*/
gen time=_n /*create time trend*/
gen y=0 if time==1 /* first observation set y=0*/
gen e=rnormal(0, 1) /*create a random number*/
replace y=(1.16*y[_n-1])+e if time~=1 /*AR(1) model =1.16*/ twoway (line y time) /*line plot*/
Example 3 – Non-stationary AR(1) Model
STATA code
set obs 500 /*set number of observations*/
gen time=_n /*create time trend*/
gen y=0 if time==1 /* first observation set y=0*/ gen e=rnormal(0, 1) /*create a random number*/ replace y=y[_n-1]+e if time~=1 /*AR(1) model =1*/ twoway (line x time) /*line plot*/ Notice
t
y is not mean reverting. Random walk =1
In the model:
1t t t y y
if 1 then t y is said to contain a UNIT ROOT i.e. is non-stationary
So 1t t t y y subtract 1t y from the LHS and RHS:
111t t t t t y y y y
t t y and because t is white noise t y is a stationary series.
Example 3 (continued) – Non-stationary AR(1) Model and First Difference
- A series t y is integrated of order one, i.e. t y I (1), and contains a unit root if t y is non-stationary but t y is a stationary series.
- Possible that the series t y needs to be differenced more than once to achieve a stationary process.
- A series t y is integrated of order d , i.e. t y I (d) if t y is non-stationary but d t y is a stationary series: Note: 21
1
t t t t t t t y y y y y y y
2.S PURIOUS REGRESSION
Why worry whether t y is stationary?
Most macroeconomic time series are trended and in most cases non-stationary processes.
Using OLS to model non-stationary data can lead to problems and incorrect conclusions.
a.high R squared often >0.95
b.high t values
c.theoretically variables in the analysis have no interrelationship Why does non-stationarity arise in macro data?