(完整word版)尖晶石型锰酸锂综述Microsoft Word 文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:
1、尖晶石锰酸锂放电平台?——3.7v,过冲电压4.2v,保护过放电压2.75v。工作电压:2.5v-4.2v。
2、三维锂离子通道?——空的四面体和八面体通过共面和共边相互联结, 形成三维的锂离子扩散通道。
3J hn-Teller效应?——LiMn2O4中Mn3+的电子组态为d4,由于这些d电子不均匀占据着八面体场作用下分裂的d轨道上,导致氧八面体偏离球对称性,畸变为变形的八面体构型,即发生了所谓的Jahl-Teller效应。
尖晶石型锰酸锂
1尖晶石型锰酸锂概述
锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化生产,如今市场产品均为此种结构。尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料(空的四面体和八面体通过共面和共边相互联结, 形成三维的锂离子扩散通道),至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有价格低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。但其较差的循环性能及电化学稳定性却大大限制了其产业化。尖晶石锰酸锂动力电池循环寿命较短和储藏性能差的主要原因之一是锰酸锂的锰易溶解于电解液中,特别在高温下(60℃)锰的溶解尤为严重。
传统认为锰酸锂能量密度低、循环性能差、结构不稳定!
尖晶石型锰酸锂属于立方晶系,Fd3m空间群,理论比容量为148mAh/g,由于具有三维隧道结构,锂离子可以可逆地从尖晶石晶格中脱嵌,不会引起结构的塌陷,因而具有优异的倍率性能和稳定性。如今,传统认为锰酸锂能量密度低、
循环性能差的缺点已经有了很大改观(万力新能典型值:123mAh/g,400次,高循环型典型值107mAh/g ,2000次)。表面修饰和掺杂能有效改善其电化学性能,表面修饰可有效地抑制锰的溶解和电解液分解。掺杂可有效抑制充放电过程中的Jahn-Teller效应。将表面修饰与掺杂结合无疑能进一步提高材料的电化学性能,相信会成为今后对尖晶石型锰酸锂进行改性研究的方向之一。
2尖晶石锰酸锂结构和性质
2.1尖晶石型锰酸锂结构
LiMn2O4是一种典型的离子晶体,并有正、反两种构型。XRD分析知正常尖晶石LiMn2O4是具有Fd3m对称性的立方晶体,晶胞常数a=0.8245nm,晶胞体积V=0.5609nm3。氧离子为面心立方密堆积(ABCABC….,相邻氧八面体采取共棱相联),锂占据1/8氧四面体间隙(V4)位置(Li0.5Mn2O4结构中锂作有序排列:锂有序占据1/16氧四面体间隙),锰占据氧1/2八面体间隙(V8)位置。单位晶格中含有56个原子:8个锂原子,16个锰原子,32个氧原子,其中Mn3+和Mn4+各占50%。由于尖晶石结构的晶胞边长是普通面心立方结构(fcc)型的两倍,因此,每个晶胞实际上由8个立方单元组成。这八个立方单元可分为甲、乙两种类型。每两个共面的立方单元属于不同类型的结构,每两个共棱的立方单元属于同类结构。每个小立方单元有四个氧离子,它们均位于体对角线中点至顶点的中心即体对角线1/4与3/4处。其结构可简单描述为8个四面体8a位置由锂离子占据,16个八面体位置(16d)由锰离子占据,16d位置的锰是Mn3+和Mn4+按1:1比例占据,八面体的16c位置全部空位,氧离子占据八面体32e位置。该结构中MnO6氧八面体采取共棱相联,形成了一个连续的三维立方排列,即[M2]O4尖晶石结构网络为锂离子的扩散提供了一个由四面体晶格8a、48f和八面体晶格16c共面形成的三维空道。当锂离子在该结构中扩散时,按8a-16c-8a 顺序路径直线扩散(四面体8a位置的能垒低于氧八面体16c或16d位置的能垒),扩散路径的夹角为107°,这是作为二次锂离子电池正极材料使用的理论基础。
2.2尖晶石型锰酸锂性质
在尖晶石框架中立方密堆氧平面间的交替层中,Mn3+阳离子层与不含Mn3+阳离子层的分布比例为3:1。因此,每一层中均有足够的Mn3+离子,锂发生脱嵌时,可稳定立方密堆氧分布,从而能发生锂的可逆脱嵌和入嵌。在充电过程中,由于Li+的脱嵌导致部分Mn3+转变成Mn4+,完全脱嵌时使+4价锰的比例由50%上升到75%。从整体上看,锂离子分布在锰氧八面体周围的二维孔道中,这种尖晶石结构有利于锂离子的入嵌和脱出,从而保证它在孔道中的迁移,使材料具有良好的充放电循环性能,并在大容量高功率动力电池中得到广泛应用。
正极材料锰酸锂在充放电过程中随着锂离子的脱嵌和入嵌,不仅材料的化学组成在锰的氧化物和锰酸锂之间发生转变,而且电极材料的微结构与形貌同样会发生相应的变化,同时存在容量衰减等问题。普遍认为,导致LiMn2O4循环时容量衰减的原因主要有充放电过程中的Jahn-Teller效应以及电极材料中锰离子在电解液中的溶解。科研人员研究了不同的措施,用以改善LiMn2O4的循环性能。如掺杂其他低价离子,来抑制Jahn-Teller效应,对电极材料的表面修饰,目的是为了减少电解液与电极的接触面积,减少锰离子的溶解损失。
2.3尖晶石锰酸锂充放电结构变化
锰酸锂锂离子电池充电时,正极中的锂离子从晶格中脱嵌,经过电解质到达
负极表面并嵌入到石墨层间。放电时,过程正好相反。在充、放电过程中,锂离子往返于正、负极之间,故也称为“摇椅式”电池。电池正极充放电反应为:
锂离子电池的放电容量与许多因素有关,如:正极材料的合成条件、锂离子在固相材料中扩散速率和放电速率的相对快慢等因素,对材料的放电容量都有非常重要的影响,所以对锂离子电池正极材料的改性应该充分考虑与材料性能有关的诸多因素,这些因素产生作用的内在原因之一是锰酸锂的结构。
尖晶石型LiMn2O4是具有Fd3m对称性的立方晶系(氧为面心立方密堆积),锂离子处于四面体的8a位置,锰离子处于16d晶格,氧离子处于八面体的32e晶格。其中四面体晶格8a,48f八面体晶格16c共面而构成互通的三维离子通道。锂离子能够在这种结构中自由地脱出或嵌入,即尖晶石型LiMn2O4的这种结构便于其在充放电时嵌锂和脱锂。
在充电时,Li+从8a位置脱出,Mn3+/Mn4+比变小,组后变成λ-MnO2,只留下[Mn2]16d O4稳定的尖晶石骨架。放电时,在静电力的作用下崁入的Li+首先进入势能低的8a空位。
2.4尖晶石型锰酸锂容量衰减
容量衰减三大因素:锰的溶解、电解液分解和j ahl-Teller效应!
目前,LiMn2O4的容量衰减在充放电过程中一直存在。在室温下,衰减发生在高电压区;高温使用时,容量衰减主要发生在高电压区,但在低电压区也有,原因是尖晶石结构中锰的溶解流失及其引起的结构不稳定,同时H+同Li+置换形成质子化相Li1-2y Mn2-y O4,使得材料只能部分地嵌锂脱锂,并且还增加了极化,导致容量降低。
Song等人,认为Li+离子迁入迁出引起了结构的膨胀收缩,使晶胞发生扭曲,破坏了晶格,随着循环的进行,间隙位甚至整个尖晶石型结构都将遭到破坏;同时,Li+脱出晶格形成的空位及O2-与留下来的Li+间强烈的吸引作用使晶胞在脱锂