高压电缆故障分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压电缆故障综合分析
按照故障产生的原因进行分类大致分为以下几类:厂家制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。下面进行分类介绍:
1、厂家制造原因
厂家制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因、电缆接地系统原因三类。
1.1电缆本体制造原因一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。
1.2电缆接头制造原因
高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。现在国内普遍采用的型式是组装型和预制型。
电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。
1.3电缆接地系统
电缆接地系统包括电缆接地箱、电缆接地保护箱(带护层保护器)、电缆交叉互联箱、护层保护器等部分。一般容易发生的问题主要是因为箱体密封不好进水导致多点接地,引起金属护层感应电流过大。另外护层保护器参数选取不合理或质量不好氧化锌晶体不稳定也容易引发护层保护器损坏。
2、施工质量原因
因为施工质量导致高压电缆系统故障的事例很多,主要原因有以下几个方面:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。
3、设计原因
因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。
高压电缆故障分析
1高压电缆故障分析
高压电缆系统故障分类的方法很多,按照故障产生的原因大致分为制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。
1.1制造原因
制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因和电缆接地系统原因三类。
1.1.1电缆本体制造原因
因为现在高压电缆制造在原材料及机器设备方面已经成熟,而且电缆在出厂前要进行交流耐压试验,试验标准160kV,半小时通过为合格(IEC60840标准要求),所以一般电缆本体出现问题的概率比较小。经笔者的考察了解,有了好的设备并不等于就会有好产品,保证产品质量不仅要有好的设备(国内现在有好几个电缆厂家的设备都具有国际先进水平),更需要有好的技术人员、操作人员和严格的检验控制。一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,情况比较严重的可能在竣工试验中或投运后不久即出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。
事故案例:电缆本体击穿事故。110kV电缆竣工后通过了5min,1.7U0变频交流耐压试验(当时的竣工验收试验标准,后来标准改为60min,1.7U0),但投运12h之后就发生了电缆本体击穿事故,击穿情况见图1,经分析排除了敷设过程破坏和外力破坏的可能性,确认为电缆本体缺陷导致击穿,怀疑为电缆内外屏蔽有突起或杂质,在工厂和现场试验时电缆绝缘已经部分受损所致。
图1电缆本体击穿情况
北京地区在执行电缆接头前电缆质量检查中曾经发现过电缆阻水层受潮、绝缘屏蔽表面有铜屑、铝护套变形、绝缘偏心、绝缘内有杂质、绝缘屏蔽划伤等问题,多次出现过因产品质量原因而退货的情况。
1.1.2电缆接头制造原因
高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。现在国内普遍采用的型式是组装型和预制型。组装型接头的绝缘部分分为环氧树脂绝缘筒和预制的应力锥两部分。为了保证应力锥与环氧树脂绝缘筒和应力锥与电缆绝缘结合界面有
足够的压力,以提高结合面允许的最高场强,设计了一组用于压紧应力锥的弹簧压紧装置。预制型接头由富有弹性的硅橡胶或三元乙丙橡胶制成。接头集改善电场分布的应力锥、导体屏蔽、绝缘屏蔽和接头的主绝缘于一体,全部在工厂预制成型,由过盈配合来保证结合面的压力;又由于硅橡胶和三元乙丙橡胶的膨胀系数接近且具有弹性,在运行中当负荷变化、温度变化引起热胀冷缩时,能自动平衡,不会产生相对位移。
电缆接头又分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等。
事故案例1:110kV电力电缆预制式中间接头发生击穿事故。电缆运行一年,被击穿部位是硅橡胶应力锥,见图2。解剖发现应力锥本体开裂,接头发生滑闪放电导致击穿,电缆表面爬电痕迹见图3。这批中间接头在制作过程中预扩充时曾发生过多次应力锥破裂问题,厂家确认是部分产品在工厂内硫化过程中出现氯原子混入导致硅橡胶弹性下降所致,通过预扩充没有破裂的应力锥可以保证安全运行。该项目在2001年进行交流耐压试验时又有2只接头在试验过程中击穿,击穿原因也是应力锥本体开裂,接头发生滑闪放电导致更进一步击穿,证明该公司这批产品质量不稳定。
图2应力锥击穿后外观图
图3电缆表面爬电痕迹
事故案例2:GIS终端接头击穿事故。电缆运行时间接近2年,直接的击穿点在电缆终端内应力锥中间、半导电应力管上方37mm处,电缆线芯与应力锥间放电,应力锥和电缆上各烧出一个18mm×20mm的孔洞,环氧套管被炸成4大块及一些碎片。事故原因是因为终端接头出线杆工艺要求包绕PVC带和VDG绝缘带,PVC带包VDG绝缘带外侧,然后泡在聚异丁烯绝缘油内,PVC带长时间浸泡后松开脱落,垂入金属应力锥内,导致电场畸变,产生局放,最终导致接头击穿,见图4。福建厦门电业局利用红外测温监测电缆终端瓷套时也发现了因PVC带脱落导致接头内电场畸变发生局部放电的情况。
图4GIS终端头击穿情况
事故案例3:220kVGIS接头击穿事故。电缆运行时间7年多,击穿部位为应力锥上部离开绝缘屏蔽末端大约20cm处。因为应力锥在爆炸时已经炸成碎片,故障分析比较困难,但终端内填充的硅油已经严重劣化,从清亮状态变成黄色的块状油脂可以看出终端内发生长期的局部放电。产生局部放电的原因很多,具体原因不明,很有可能是绝缘油本身有问题。
1.1.3电缆接地系统原因
电缆接地系统包括电缆接地箱、电缆接地保护箱(带护层保护器)、电缆交叉互联箱、护层保