四种人脸识别方法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四种人脸识别方法研究
人脸识别是近二十年来模式识别中的一个重要课题,近年来人脸识别系统已
经可以较为准确的在某些限定的条件下对人脸进行识别,随着应用范围的不断扩
展,受到越来越多企业和单位的重视。现在,人脸识别已经在公共安全、智能监
控、数字身份认证、电子商务、多媒体和数字娱乐等领域显现了巨大的应用价值。
随着人脸识别的应用越来越广泛,人们对十人脸识别实用性的要求则变得越来越
严格。虽然现今的大多数人脸识别算法已经可以在较为固定的环境下对人脸进行
较为正确的识别,但实际使用过程中,由十受到光照、姿势、表情、遮挡等因素
的影响,人脸识别的精度仍然不能满足实际的要求。本文针对上述存在问题进行
探究,并取得了如下的主要成果:
1、针对主成分分析(PCA)方法和仿生方法在特征提取和降维方面的不足,提
出一种Gabo:特征提取的仿生人脸识别方法。该方法首先提取人脸图像Gabo:特征
向量,经2DPCA方法降维处理后运用仿生识别方法对其进行人脸识别。在Yale Face database B和P工E人脸库上验证了该方法的有效性。实验结果表明,该方法的分
类准确性优十仿生识别方法和PCA等方法。
2、针对基十欧氏空间的人脸识别算法框架与人类的视觉感知系统有着很大差
异的问题,提出了一种相关性子空间人脸识别方法,通过相关性度量多维尺度分
析(Correlation MDS, CMDS)方法寻找到一个相关性保持的子空间,将高维人脸
数据投影到此子空间中,使得人脸图像间的相似性能够得到保持。既然高维数据
中的非线性几何结构常常是嵌在数据间的相似性,因此相关性子空间人脸识别方
法能够有效地获取高维人脸数据中的非线性流形结构。在多个数据集上的实验结
果表明:该方法可有效地提取高维数据的内在结构。
3、从人类认知方式出发,提出了一种基十统计学习的局部匹配人脸识别方法,
该方法首先将人脸图像划分成若干小块,将每个子块看成一弱分类器,接着利用Adaboost学习算法将这些弱分类器组成一个强分类器,将各个子块(特征)有效地
组合起来,发挥他们的最佳判别能力,提高最终的分类效果。与整体匹配方法相
比,局部匹配的人脸识别对人脸局部变化(光照、表情、姿态等)更具有健壮性,
实验结果表明该方法可有效地提高人脸的识别准确率并对人脸的表情和光照具有
较好的鲁棒性。
4、针对稀疏表示方法存在对负系数缺乏必要的物理意义解释目_不能通过常用
的梯度下降法来求解的问题,提出了一种非负稀疏表示的人脸识别方法,其理论
基础是将测试图像表示成训练图像的非负稀疏线性组合,这样更符合人类的认知巨更
具有实际的物理意义,还可将稀疏表示中L}范数最小化问题转换成基十L2范
数最小化的稀疏表示问题,从Ifu能够通过常用的梯度下降法来求解。该方法无需
进行降维,特征选择,合成训练样本和变换域等操作。在Yale B扩展数据库上的大
量的实验结果表明了该算法的有效性。巨更具有实际的物理意义,还可将稀疏表示中L}范数最小化问题转换成基十L2范数最小化的稀疏表示问题,从Ifu能够通过常用的梯度下降法来求解。该方法无需进行降维,特征选择,合成训练样本和变换域等操作。在Yale B扩展数据库上的大量的实验结果表明了该算法的有效性。