概周期函数和概周期方程介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概周期函数
又称殆周期函数,周期函数的一种推广,具有某种近似周期性的有界连续函数。概周期函数是在研究周期函数某种性质的基础上进一步提出来的。三角多项式以及
三角多项式序列的极限都是周期函数。而三角和(сj为复数,λj为实数)序列的极限却未必是周期函数。但这类极限函数的特征可以用某种近似周期性来刻画。考虑最简单的情形,两个连续周期函数ƒ(x)及g(x)的和函数S(x)=ƒ(x)+g(x),设F为ƒ(x)的周期,G为g(x)的周期。如果F 和G是可公度的,即存在正整数n1和n2,使得n1F=n2G,那么S(x)也为一周期函数,而且以n1F=n2G为周期。但当F和G是不可公度时,虽然不存在整数n1和n2,满足
,
但由有理数集的稠密性原理可知:存在正整数n1和n2,使得
|n1F-n2G|<δ,这里,δ是事先任给的正数。从而,存在数τ满足
|n1F-τ|<δ及|n2G-τ|<δ。还可以进一步证明更强的结论:对任给的δ>0,存在着正数l(δ),使得在每一个长为l(δ)的区间内至少有一数τ满足上式。这样,由ƒ(x)和g(x)的连续性、周期性以及上述事实便得到:对任给的ε>0,存在着正数l(ε),使得在每一个长为l(ε)的区间内至少有一数τ,满足│S(x+τ)-S(x)│<ε。上式虽然并不说明S(x)为周期函数,但它具有近似的周期性。一般来说,可以给出如下的精确描述:设ƒ(x)为定义于实轴上的复值连续函数,如果τ满足
,
就称τ为ƒ(x)的属于ε的平移数。若对任一ε>0,存在l(ε)>0,使得长度为l(ε)的区间内至少包含一个ƒ(x)的属于ε的平移数,则称ƒ(x)为概周期函数。任一周期函数必为概周期函数;由上可知,任意有限个周期函数的和函数也必为概周期函数。因而,复值三角和
必为概周期函数。概周期函数理论中的一个重要结果是:ƒ(x)为概周期函数当且仅当ƒ(x)可以用上述的三角和序列来一致逼近。
概周期微分方程
其右端函数对自变量是概周期函数的微分方程;即在方程
(1)
中,ƒ(x,t)是t的概周期函数。这里x是n维向量,ƒ(x,t)是n维向量函数。概周期微分方程的发展历史不长,但由于它具有实际背景(如天体力学和非线性振动的问题)而显示出生命力。特别是,1945年,A.H.柯尔莫哥洛夫利用无理性条件,指出哈密顿系统具有拟周期解。1963年,Β.И.阿诺尔德又给出严格证明,由此证明了太阳系不稳定的概率为零,解决了平面限制性三体问题的稳定性问题,从而使P.-S.拉普拉斯提出的已历时二百年的太阳系稳定性问题有了重大的突破。这样,概周期微分方程就更显出它的重要性。
对概周期方程(也称概周期系统)(1),主要是讨论其概周期解的存在性和稳定性。线性微分方程是微分方程论的基础,因此概周期线性微分方程的结构以及概周期解的摄动理论也是概周期系统的重要课题。
线性系统法瓦尔性质对概周期线性系统
, (2)
式中A(t)是n×n概周期方阵;ƒ(t)是n维概周期向量函数,定义A(t)的外壳为
。
法瓦尔提出这样的条件:对于(2)的齐次外壳方程系
(3)
的任一非显易的有界解x B(t),总满足关系式
,
称这条件为法瓦尔性质。这性质是从常系数线性系统或周期性线性系统总结出来的。法瓦尔指出,在这个条件下,(2)的有界解的存在性含有概周期解的存在性。
弗洛奎特理论周期线性系统可以通过正则、线性、周期的变换化为常系数线性系统。通常称这种关系为弗洛奎特理论。人们希望这种性质可以推广到概周期线性系统或拟周期线性系统。G.R.塞尔指出,弗洛奎特理论不能推广到概周期线性系统(1974)。
指数型二分性从第一近似观点出发,在原点附近的非线性系统
(4)
(式中A的特征根的实部不为零),与它的线性部分有相同的拓扑结构,原因在于后者具有指数型二分性。对于线性部分为变系数的非线性系统
, (5)
当它的线性部分
(6)
是概周期系统且其特征指数不为零时,R.J.萨克和塞尔研究了A(t)和其外壳H(A(t))的性质,得到(6)具有指数二分性的条件(1974、1976)。
非线性系统对概周期系统 (1)的概周期解的求解,尚无统一的办法。Z.奥皮尔举出存在这样的系统(1),它的解均有界,但没有概周期解(1961)。A.M.
芬克和P.O.弗雷德里克桑构造了一个概周期系统,其每个解都是毕竟有界,但没有概周期解。由此可见,除了一切解有界以外,还必需附加一些条件,才能得到概周期解。在这方面G.塞费特、塞尔、米尔、J.卡托等人都提出了不同的附加条件。 类似于法瓦尔的考虑,L.阿梅里奥对概周期系统(1)提出分离性的概念,而探讨概周期解的存在性。设K是(1)的定义中的致密集,对任一g(x,t)∈h(ƒ(x,t)),当x(t),y(t)均为
(7)
的解,且x(t),y(t)均在K上,且常存在λ(g)>0,使‖x(t)-y(t)‖≥λ(g), 则说(1)在K上满足分离性条件。阿梅里奥证明了,这种情况下,(1)具有概周期的解。
讨论概周期微分方程要涉及到哈密顿系统以及三体问题。