23 互感及含耦合电感的电路计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果右线圈绕向反过来? 如果右线圈绕向反过来?
ψ 1 = ψ 11 − ψ 12 = L1i1 − M12 i2 ψ 2 = −ψ 21 + ψ 22 = − M 21i1 + L2 i2
一般地,对线性线圈而言,两线圈中的互感系数是相等的, 一般地,对线性线圈而言,两线圈中的互感系数是相等的, 即M12=M21=M
电路 南京理工大学自动化学院
串联
. .
i
i
* *
L1
M
*
M
L2
.
*
L1
L2
.
综上所述, 综上所述,耦合电感串联时的等效电感为
L = L1 + L2 + 2 M
其中, 同样为代数量 同样为代数量: 电流从同名端流入时, 其中,M同样为代数量: 电流从同名端流入时,M>0 电流从异名端流入时, 电流从异名端流入时,M<0
ψ 1 = ψ 11 + ψ 12 = L1i1 + M12 i2 ψ 2 = ψ 21 + ψ 22 = M 21i1 + L2 i2
南京理工大学自动化学院
电路
+.
9.1 互感
互感
N2
3、线圈1和2通电流 N 线圈1 1
φ12 φ11
φ22
i2
φ21
_ u 1
i1 +.
_ u 2
.
.
N1 N2
φ12 φ11
φ22
i2
φ21
_ u 1
i1 +.
_ u 2
.
.
dψ 1 dψ 11 dψ 12 di1 di2 u1 = = − = L1 −M dt dt dt dt dt dψ 2 dψ 21 dψ 22 di1 di 2 u2 = =− + = −M + L2 dt dt dt dt dt
dψ 1 dψ 11 dψ 12 di1 di2 u1 = = + = L1 +M dt dt dt dt dt dψ 2 dψ 21 dψ 22 di1 di2 u2 = = + =M + L2 dt dt dt dt dt
南京理工大学自动化学院
电路
+.
9.1 互感
互感
φ φ 自感磁通; i1:施感电流; 11 :自感磁通; 21 :耦合磁通或互感磁通 施感电流;
电路 南京理工大学自动化学院
+.
9.1 互感
1、线圈1通电流 线圈1
互感
N1 N2
φ21
φ11
_ u 11
.
i1
_ u 21
+.
.
若左线圈中通一电流i 则在线圈本身中形成自感磁通Φ 若左线圈中通一电流i1,则在线圈本身中形成自感磁通Φ11 和自感磁链ψ11,显然ψ11=L1i1,L1为线圈 l的自感;在右线圈 自感; 全部匝数N 中将形成互感磁通Φ 全部匝数N2中将形成互感磁通Φ 21和互感磁链ψ21, ψ21也与电 流i1 成正比,即ψ21=M21i1,比例系数M21称为线圈 l与线圈2的 成正比, 比例系数M 与线圈2 互感。 互感。
ψ12也与电流i2成正比,即ψ12=M12i2,比例系数M12称为线圈 2 也与电流i 成正比, 比例系数M
与线圈1 互感。 与线圈1的互感。
电路 南京理工大学自动化学院
+.
9.1 互感
互感
N1 N2
3、线圈1和2通电流 线圈1
φ12 φ11
φ22
i2
φ21
_ u 1
i1 +.
_ u 2
.
.
若两个线圈中同时有电流i 若两个线圈中同时有电流i1和i2存在,则每个线圈中总磁链 存在, 为本身的自感磁链和另一个线圈中电流在线圈内形成的互感 磁链的代数和。 磁链的代数和。
电路 南京理工大学自动化学院
串联
. .
i
i
* *
L1
M
*
M
L2
.
*
L1
L2
_
.
_
_
jω M I 1
_
.
X L1 = ω L1 — 自感抗 X M = ω M — 互感抗
南京理工大学自动化学院
电路
耦合系数
耦合系数
耦合系数为两耦合线圈的互感磁链和 自感磁链之比的几何平均值, 表示。 自感磁链之比的几何平均值,用k表示。 表示
ψ 12 ψ 21 Mi 2 Mi1 M k= ⋅ = ⋅ = ψ 11 ψ 22 L1 i1 L2 i2 L1 L2
南京理工大学自动化学院
电路
9.1 互感
相量电路模型
+ .
.
I1
.
jω M
I2
.
U1 jω L1
* *
.
_
+ . jω L2 U2 _
.
+
U1 + jω M I 2
.
.
I1
jω L1
.
I2
jω L2
.
.
+
U2
.
.
+
U1 jω L1
+ .
. .
I1
.
jω M
I2
.
* *
_
+ . jω L2 U2 _
. .
• • •
电路


*

*
南京理工大学自动化学院
同名端
同名端的判别
b、直流法: 直流法:
测定同名端的电路
如果发现电压表指针正向偏转,说明 如果发现电压表指针正向偏转,
u2 = u2 M
电路
di1 则可断定l 是同名端. =M > 0 ,则可断定l和2是同名端. dt
南京理工大学自动化学院
9.1 互感
电路 南京理工大学自动化学院
+.
9.1 互感
互感
N1 N2
2、线圈2通电流 线圈2
φ22
i2
φ12
_ u 12 _ u 22
.
+.
.
同理,若右线圈中通一电流i 同理,若右线圈中通一电流i2,则在线圈本身中形成自感 磁通Φ 磁通Φ 22和自感磁链ψ22,显然ψ22=L2i2,L2为线圈 2的自感; 自感; 在左线圈全部匝数N 中将形成互感磁通Φ 在左线圈全部匝数N1中将形成互感磁通Φ 12和互感磁链ψ12,
南京理工大学自动化受控源电路模型
+
u1
.
i1 L1
M
i2 L2 i2 L2
* *
+
u2
.
+
L1 u1 L2
.
i1
i2
.
+ + +
u2
.
_
.
i1 M
_
_
+
u1
. .
. .
.
di di2 M dt _
di di1 M _ dt
_
.
*
L1
+ _
_
u2
*
注:1. 受控源电压源和电流 为关联参考方向。 为关联参考方向。 2. M为代数量。电流均 为代数量。 为代数量 从同名端流入时, 取正 取正, 从同名端流入时,M取正, 否则取负。 否则取负。
电路
南京理工大学自动化学院
9.1 互感
互感
N1 N2
φ21
φ11
_ u 11
.
i1
_ u 21
+.
.
如果两个线圈的磁场存在相互作用,就称这两个线圈具 如果两个线圈的磁场存在相互作用, 有磁耦合。图示为两个相互有磁耦合关系的线圈。 有磁耦合。图示为两个相互有磁耦合关系的线圈。
+.
电路
南京理工大学自动化学院
作业
9 -3 9 -6 9-10 (b, d)
电路
南京理工大学自动化学院
第9章 含耦合电感的电路
目 录
9.1 互感 9.2 含耦合电感的电路计算 9.3 空心变压器 9.4 理想变压器
电路
南京理工大学自动化学院
9.1 互感
磁耦合线圈在电子工程、 磁耦合线圈在电子工程、通信工程和测量仪器等方面 得到了广泛应用。为了得到实际耦合线圈的电路模型, 得到了广泛应用。为了得到实际耦合线圈的电路模型, 现在介绍一种动态双口元件——耦合电感 现在介绍一种动态双口元件——耦合电感,并讨论含 耦合电感, 耦合电感的电路分析。 耦合电感的电路分析。
k = 1 全耦合 k < 0.05 松耦合 0.05 < k < 1 越大耦合越紧
电路 南京理工大学自动化学院
耦合系数
耦合系数
耦合系数为两耦合线圈的互感磁链和 自感磁链之比的几何平均值, 表示。 自感磁链之比的几何平均值,用k表示。 表示
Mi 2 Mi1 M ψ 12 ψ 21 k= ⋅ = ⋅ = L1 i1 L2 i2 ψ 11 ψ 22 L1 L2
需耦合时 两线圈紧密绕在一起或靠近。 (1)两线圈紧密绕在一起或靠近。 将绕组绕在用铁磁材料制成芯子上面。 (2)将绕组绕在用铁磁材料制成芯子上面。 不需耦合时两线圈 互相垂直放置。( 。(2 远离。( 。(3 相互屏蔽。 (1)互相垂直放置。(2)远离。(3)相互屏蔽。
电路 南京理工大学自动化学院
9.1 互感
自感
在此电感元件中,磁链Ψ和感应电压u 在此电感元件中,磁链Ψ和感应电压u均由流经本电感元件 的电流所产生, 的电流所产生,此磁链感应电压分别称为自感磁链和自感 电压
φ
+ u _
Ψ
L=
ψ
i
. .
i
线性电感
0
dψ di u= =L dt dt
电路
i
南京理工大学自动化学院
9.1 互感
互感
9.2 含耦合电感的电路计算
一对耦合电感的串联
. .
i
i
* *
L1
M
*
M
L2
.
*
图(a)
L1
L2
.
图(b)
顺串是将 的异名端相连[图 顺串是将L1和L2的异名端相连 图(a)],电流 均从同名 是将 ,电流i均从同名 端流入,磁场方向相同而相互增强。反串是将 是将L 端流入,磁场方向相同而相互增强。反串是将 1和L2的同 名端相连[ 图(b)],电流i从L1的有标记端流入,则从L2的有 名端相连 ,电流 从 的有标记端流入,则从 标记端流出,磁场方向相反而相互削弱。 标记端流出,磁场方向相反而相互削弱。
电路 南京理工大学自动化学院
+.
9.1 互感
互感
N1 N2
φ12 φ11
φ22
i2
φ21
_ u 1
i1 +.
_ u 2
.
.
当电流i 当电流i1和i2随时间变化时,线圈中磁场及其磁链也随时间 随时间变化时, 变化,并将在线圈中产生感应电动势。 变化,并将在线圈中产生感应电动势。 根据电磁感应定律: 根据电磁感应定律:
每个线圈的电压均由自感磁链产生的自感电压 每个线圈的电压均由自感磁链产生的自感电压和互感 自感电压和互感 磁链产生的互感电压两部分组成。 磁链产生的互感电压两部分组成。 互感电压两部分组成
电路 南京理工大学自动化学院
+.
同名端
“同名端”标记 同名端”
为了在未知线圈相对位置和绕法的情况下, 为了在未知线圈相对位置和绕法的情况下,确定互感电 压的极性, 压的极性,人们在耦合线圈的两个端钮上标注一对特殊的符 号,称为同名端。当电流i1和i2在耦合线圈中产生的磁场方向 称为同名端。当电流 相同而相互增强时,电流 所进入(或流出 的两个端钮, 或流出)的两个端钮 相同而相互增强时,电流i1和i2所进入 或流出 的两个端钮, 同名端, 表示。 就称为同名端 常用• 和 或 和 就称为同名端,常用 或 * 表示。例如左图的 l和2(或 l′和2 ′) 是同名端; 是同名端;右图的 l和2 ′或( l ′和2)是同名端。 和 或 和 )是同名端。
电路 南京理工大学自动化学院
同名端
1、同名端定义 、
当电流i 当电流 1和i2在耦合线圈中产生的磁场方向相同而相互增强 所进入(或流出 的两个端钮称为同名端 或流出)的两个端钮称为同名端。 时,则电流i1和i2所进入 或流出 的两个端钮称为同名端。 则电流
2、同名端的判别 、
a、 通过绕向判别: 、 通过绕向判别:
电路 南京理工大学自动化学院
反串
2. 反串:电流从异名端流入的串联 反串:
M
.
+
i
*
L1
L2
*
u
. _
di di di di u = L1 − M − M + L2 dt dt dt dt di " di = ( L1 + L2 − 2 M ) = L dt dt
此式表明耦合电感反接串联的单口网络,就端口特性 此式表明耦合电感反接串联的单口网络, 而言,等效为一个电感值为 的二端电感。 而言,等效为一个电感值为L”= L1+L2-2M的二端电感。 的二端电感
N1 N2
φ21
φ11
_ u 11
.
i1
_ u 21
+.
.
为了更好地说明问题,图中部分物理量采用双下标表示: 双下标表示 为了更好地说明问题,图中部分物理量采用双下标表示: 第一下标表示该物理量所在线圈的编号;第二下标表示产 第一下标表示该物理量所在线圈的编号; 生该物理量的电流所在线圈的编号。 生该物理量的电流所在线圈的编号。
耦合电感端口的伏安关系
+
u1
.
i1 L1
M
i2 L2
. .
* *
+
u2
. . .
电路
_
_
di1 di 2 u1 = L1 +M dt dt di1 di 2 u2 = M + L2 dt dt
i1
M
i2 L2
+
u1
. .
*
L1
+ _
_
u2
*
di1 di2 u1 = L1 −M dt dt di1 di2 u2 = − M + L2 dt dt
电路 南京理工大学自动化学院
顺串
1. 顺串:电流从同名端流入的串联 顺串: u _ + u _ +
1
.
+
i
*
L1
M
2
*
u
L2
. _
di di di di u = L1 + M + M + L2 dt dt dt dt di ' di = ( L1 + L2 + 2M ) = L dt dt
耦合电感顺接串联的单口网络,就端口特性而言, 耦合电感顺接串联的单口网络,就端口特性而言,等效为 一个电感值为L 的二端电感。 一个电感值为 ’= L1+L2+2M 的二端电感。
相关文档
最新文档