无人机视觉导航

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Monocular Vision-Based Autonomous Navigation System on a Toy Quadcopter in Unknown Environments
Rui Huang1, Ping Tan1, Ben M.Chen2
International Conference on Unmanned Aircraft Systems2015(ICUAS2015). New York, USA: Institute of Electrical and Electronic Engineers(IEEE),2015: 1260-1269.
Autonomous Flight and Obstacle Avoidance of a Quadrotor By Monocular SLAM
Omid Esrafilian and Hamid D In 2016 4th International Conference on Robotics and Mechatronics (ICROM), pages 240–245.
PATH PLANNING
A Simple Autonomous Flight Control Method of Quadrotor Helicopter using only single Web Camera*
Kazuya Sato1, Toru Kasahara1, and Tomoyuki Izu2 International Conference on Unmanned Aircraft Systems 2016(ICUAS)2016
基于视觉伺服的小型四旋翼无人机自主飞行 控制研究进展
吕强1,马建业1,王国胜1,林辉灿1,梁冰2 科技导报2016,34(24)
无人机平台的优势:
• 无人机正快速成为一种无处不在的现代工具,它在搜索、救援、 监视、航拍、远程遥感等领域已得到广泛应用,更被应用于电线 检修和农业感知等特殊领域。与有人驾驶的飞行器和固定翼无人 机相比,小型四旋翼无人机由于体型小、可垂直起降、机动灵敏 等特点,使针对狭窄空间的搜索成为可能,并且在室内进行飞行 测试更加方便;此外其以电池替代燃料驱动,即使发生碰撞也不 会对人类造成严重威胁,安全性得到大幅提升。
Two colored balls as a color marker are attached to the multicopter and recognize the position of colored balls using captured video images on the window from a Web camera which putting on the ground.
PBVS 的基本结构
优点:可以直观地在直角坐标空间定义目标的运动,符合现有机器人的工作方式。 缺点:控制精度很大程度上依赖于位姿估计精度,而位姿估计精度依赖于摄像机和 机器人的标定精度等;此外计算量较大。
IBVS的基本结构
优点:无需三维空间定位、对摄像机和机器人标定不敏感;计算量较小。 缺点:伺服控制器复杂且缺乏适应性;需要额外的传感器获取深度信息;移位 过大会导致不可预知摄像头运动。
.
Visual Slam
A. Feature Tracking
B. Camera Pose Estimation
C. Keyframe Insertion and Map Generation D. Relocalisation
SENSOR FUSION
Advantage: • Firstly, we use a much simplified state space to reduce the computation. • Secondly,our scale estimator does not rely much on vertical motion of the drone, which is not common in the real flights. • To address the drifting errors in integrating IMU measurements, we solve the scale factor by comparing velocities from visual SLAM and onboard sensors.
.
Platfor m
The AR.Drone is a micro Unmanned Aerial Vehicle (UAV) developed by the Parrot company for the increasing market of videos games and home entertainment. The drone is lowcost, safe, and easy to fly by end users. A. Hardware 1.a front camera 2.downward-looking camera 3.The navigation board is equipped with the sensors including a 3-axis accelerometers, a 2-aixs gyroscope, a 1-axis vertical gyroscope and 2 ultrosonic sensors.
视觉伺服简介:
• 视觉伺服指的是利用计算机视觉信息控制机器人的运动,依赖于 图像处理、计算机视觉和控制理论等技术。 • 在GPS信号较弱甚至失效的环境下,视觉伺服能够通过视觉信息 控制自主飞行,因此近年来视觉伺服在自主飞行控制领域受到广 泛关注。对于小型四旋翼无人机自主飞行控制的应用研究中,视 觉伺服的实时性、精确性和鲁棒性尚待提高,且小型四旋翼无人 机的智能化不高,在室内室外模式转换及室内协同控制方面还有 广阔的发展空间。
视觉伺服的分类:
• 所有基于视觉伺服的方案,目的都是减小误差e(t)。误差e(t)可表 示为 • e(t) =s(m(t), a) -s* • 式中,矢量m(t)为一连串的图像测量值;s (m(t),a)为视觉特征点 矢量;a 为摄像头固有参数;s *为期望特征值。 • 通过对s 定义的不同,可将视觉伺服分为基于位置的视觉伺服 (Position Based Visual Servo,PBVS)和基于图像的视觉伺服 (Image-Based Visual Servo,IBVS)。
总结:
• 该系统将通过无线摄像头获取的视频流传输给地面站计算机,在 地面站上运行视觉SLAM算法处理数据进行位姿估计。为解决收到 的视频中运动模糊和帧丢失问题,改进了视觉SLAM算法中的特征 跟踪方法和重新定位模块,增强了鲁棒性。同时为获得更精准的 三维位置与速度,融合了视觉SLAM和机载传感器获取的数据,并 且设计了一种扩展卡尔曼滤波器用于传感器数据融合,矫正了局 部漂移误差并且解决了比例模糊问题。
视觉伺服无人机发展பைடு நூலகம்势:
• 1)视觉算法的鲁棒性。若摄像头运动过快且特征不是特别明显, 则会发生特征点跟踪失败从而丢失位置的现象。只有从根本上增 强视觉算法的鲁棒性,才能够实现在任何环境下的自主飞行。 • 2)室内室外模式转换。当GPS信号低于一定值时转换为视觉定位, 高于一定值时转换为GPS定位。 • 3)室内协同控制。多无人机室内协同控制可同时控制多架无人 机对复杂环境进行分块搜索、侦察和构图等,这一功能不仅大大 提高任务执行效率,而且增强其可靠性。
EXPERIMENTAL RESULT
• The position information of multicopter in x, y,z coordinates were measured by using color markers with single Web camera • Can easily manipulate a multicopter only operating the changing the width of the frame on the window. • Does not need to modify the actual multicopter which is manipulated by the human operator using a radio control transmitter.
MAP ENRICHMENT
First, the point cloud area of robot is selected and is divided into several boxes in order to fit a plane to each box. Then, these boxes are distinguished in different clusters (Fig. 3-b). In the next step the outlier planes are determined and corrected according to the normal vector of each cluster (Fig. 3-c). Finally, the existed points are lined up and some extra points are added to make it more dense (green points in Fig. 3-d).
• B. Platform Modeling and Controller Design
We use the System Identification Toolbox of MATLAB to fit the system transferfunctions for each channel separately. Firstly, we sample a sequence of a chirp signal as the control parameters. Then we send the control signals at the sampling rate to the drone and record the response using a motion capture system called Vicon with millimeter precision.
相关文档
最新文档