存储器的发展与技术现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存储器的发展史及技术现状
20122352 蔡文杰计科3班
1.存储器发展历史
1.1存储器简介
存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。自世界上第一台计算机问世以来,计算机的存储器件也在不断的发展更新,从一开始的汞延迟线,磁带,磁鼓,磁芯,到现在的半导体存储器,磁盘,光盘,纳米存储等,无不体现着科学技术的快速发展。
1.2存储器的传统分类
从使用角度看,半导体存储器可以分成两大类:断电后数据会丢失的易失性存储器和断电后数据不会丢失的非易失性存储器。过去都可以随机读写信息的易失性存储器称为RAM(Randoo Aeeess Memory),根据工作原理和条件不同,RAM又有静态和动态之分,分别称为静态读写存储器SR AM(St ate RAM)和动态读写存储器DRAM(Dynamie RAM);而过去的非易失控存储器都是只读存储RoM(Readon一y Memo-ry),这种存储器只能脱机写人信息,在使用中只能读出信息而不能写人或改变信息.非易失性存储器包含各种不同原理、技术和结构的存储器.传统的非易失性存储器根据写人方法和可写人的次数的不同,又可分成掩模只读存储器MROM(Mask ROM)、一次性编程的OTPROM(one Time Programmable ROM)和可用萦外线擦除可多次编程的Uv EPROM(Utravio-let ErasableProgrammable ROM).过去的OT PROM都是采用双极性熔丝式,这种芯片只能被编程一次,因此在测试阶段不能对产品进行编程性检侧,所以产品交付用户后,经常在编程时才会发现其缺陷而失效,有的芯片虽然能被编程,但由于其交流性不能满足要求,却不能正常运行.故双极性熔丝式PROM产品的可信度不高.
2.半导体存储器
由于对运行速度的要求,现代计算机的内存储器多采用半导体存储器。半导体存储器包括只读存储器(ROM)和随机读写存储器(RAM)两大类。
2.1只读存储器
ROM是线路最简单的半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般地,只读存储器用来存放固定的程序和数据,如微机的监控程序、BIOS(基本输入/输出系统Basic Input/Output System)、汇编程序、用户程序、数据表格等。
根据编程方法不同,ROM可分为以下五种:1、掩码式只读存储器,这类ROM 在制造过程中,其中的数据已经事先确定了,因而只能读出,而不能再改变。它的优点是可靠性高,价格便宜,适宜批量生产。2、可一次性编程只读存储器
(PROM),为了使用户能够根据自己的需要来写ROM,厂家生产了一种PROM。允许用户对其进行一次编程──写入数据或程序。一旦编程之后,信息就永久性地固定下来。用户可以读出和使用,但再也无法改变其内容。3、可擦可编程只读存储器(EPROM),这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上的透明视窗的方式来清除掉。4、电可擦可编程只读存储器(EEPROM),功能与EPROM一样,不同之处是清除数据的方式。另外它还可以用电信号进行数据写入。5、快闪存储器(Flash Memory),是在EEPROM的基础上发展而来,只是它提高了ROM的读写速度。
然而,相比之下,ROM的读取速度比RAM要慢的多,因此,一般都用RAM来存放当前正在运行的程序和数据,并且随时可以对存放在里面的数据进行修改和存取。而面对CPU的高速发展,内存的速度使得高速运算受到了限制,为了缓解这种矛盾,人们找到了几种方法,其中一种就是采用更高速的技术,使用更先进的RAM作为内存。于是,就有了RAM的发展历史。
2.2随机存储器
RAM可分为SRAM(Static RAM,静态随机存取存储器)和DRAM(Dynamic RAM,动态随机存取存储器)。SRAM曾经是一种主要的内存,它以6颗电子管组成一位存储单元,以双稳态电路形式存储数据,因此不断电时即可正常工作,而且它的处理速度比较快而稳定,不过由于它结构复杂,内部需要使用更多的晶体管构成寄存器以保存数据,所以它采用的硅片面积相当大,制造成本也相当高,所以现在常把SRAM用在比主内存小的多的高速缓存上。而DRAM的结构相比之下要简单的多,其基本结构是一个电子管和一个电容,具有结构简单、集成度高、功耗低、生产成本低等优点,适合制造大容量存储器,所以现在我们用的内存大多是由DRAM构成的。但是,由于是DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。
3.内存的发展
内存是以一块块的IC(集成电路)焊接到主板上的,然而,这样做对于后期维护产生了很多问题,十分不方便。于是,内存条的概念出现了。
3.1 FP DRAM
在80286主板刚推出的时候,内存条采用了SIMM(Single In-line Memory Modules,单边接触内存模组)接口。其在80286处理器上是30pin SIMM内存,随后,到了386,486时期,由于CPU已经向16bit发展,30pin SIMM内存无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,因此就出现了70pin
SIMM内存。72线的SIMM内存引进了一个FP DRAM(快页内存),因为DRAM需要恒电流以保存信息,一旦断电,信息即丢失。它的刷新频率每秒钟可达几百次,但由于FP DRAM使用同一电路来存取数据,所以DRAM的存取时间有一定的时间间隔,这导致了它的存取速度并不是很快。另外,在DRAM中,由于存储地址空间是按页排列的,所以当访问某一页面时,切换到另一页面会占用CPU额外的时钟周期。
3.2 FPM DRAM
486时期普遍应用的内存是FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器),这是改良版的DRAM,传统的DRAM在存取一个BIT 的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据,从而大大提高读取速度。
3.3 EDO DRAM
继FPM之后,出现的一种存储器——EDO DRAM(Extended Date Out RAM,外扩充数据模式存储器)内存开始盛行。EDO-RAM不需要像FPM DRAM那样在存取每一BIT数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。
3.4 SDRAM
自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入SDRAM时代。SDRAM(Synchronous DRAM,同步动态随机存取存储器),是一种与CPU实现外频Clock同步的内存模式。所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。SDRAM内存有PC66规范,PC100规范,PC133规范,甚至为超频需求,又提供了PC150、PC166规范的内存。
3.5 Rambus DRAM
Intel与Rambus公司联合开始在PC市场推广Rambus DRAM内存。与SDRAM 不同的是,RDRAM采用了新一代高速简单内存架构,基于一种类RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高。尽管RDRAM在时钟频率上有了突破性的进展。