机器视觉检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器视觉检测
一、概念
视觉检测是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉检测的特点是提高生产的柔性和自动化程度。
二、典型结构
五大块:照明、镜头、相机、图像采集卡、软件
1.照明
照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为:
2.镜头
镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。
3.相机
按照不同标准可分为:标准分辨率数字相机和模拟相机等。
要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。
为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。
4.图像采集卡
图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。
5.软件
视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。
三、关键——光源的选择
1.光源选型基本要素:
.
.
2.光源类型
四、图像采集过程
五、视觉检测分类
(1)按照检测功能可划分:定位、缺陷检测、计数/遗漏检测、尺寸测量。(2)按照其安装的载体可分为:在线检测系统和离线检测系统。
(3)按照检测技术划分,通常有立体视觉检测技术、斑点检测技术、尺寸测量技术、OCR技术等等。
六、视觉检测应用
同时,在交通行业的车牌识别和流量检测、药品行业的包装检测、饮料行业的容量检测和外包装检测、烟草行业的烟标检测和外包装检测、纺织行业的布匹瑕疵检测、五金行业的螺丝钉检测、运输行业的货物分拣、食品行业的水果分拣、电子行业的焊接检测和装配定位、钢铁行业的钢板表面缺陷检测、智能读表、智
能抄表等都有应用。
七、一套高品质的机器视觉检测系统,必须具备的条件
1.高品质的成像系统
成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别能力的好坏是评价成像系统的最关键指标。通常,成像系统的评价指标主要体现在三个方面:
(1)能否发现存在的缺陷
基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。所以,一个高品质的成像系统首先应该是一个能充分表现被检测物表面颜色变化的成像系统。因此除了选择具有高清晰度的相机与镜头之外,用以营造成像环境的光照设计也显得非常重要,有时候甚至会出现为特殊缺陷专门设计的光照系统。经常所说的100%质量检测系统,实际上指的是在能够充分表现各种缺陷的图像中的100%全检。
(2)能够发现的缺陷的最小尺寸
数字图像的最小计量单位是像素(pixel),它本身并不代表被摄物实际的尺寸大小。被摄物实际尺寸大小与像素之间的关联是通过一个叫做分辨力的物理量来完成的。分辨力指的是每单位像素代表的实际物体尺寸。分辨力数值越小,图像的精细程度就越高,检测系统能够发现的缺陷尺寸就越小,检测精度就越高。(3)能否足够快地摄取图像
如同人眼看运动物体一样,当物体运动的足够快时,人眼就不能再清晰的观察到物体的全部。机器视觉检测系统的“眼睛”摄像机也有一个拍摄速度上限,即相机主频。当被摄物的运行速度超出了摄像机的主频上限时,摄像机就不能获得清晰、完整的图像,检测就不能正常地继续下去。摄像机主频越高,采集速度也就越快,检测才能保持高效进行。因此,是否采用了足够高主频的摄像机也是评价一个成像系统是否高品质的关键因素。
2.成熟的图像处理与分析算法
图像处理与分析算法在整个检测系统中相当于人工检测时人脑的判断思维,由于机器视觉是一个实践性很强的学科,评价一个算法的好坏更多的是依赖于实际应用的验证而非考察算法中是否采用了比较先进或高深复杂的理论。因此一个能够充分模拟人脑判断过程与方法并且稳定、高效的图像处理与分析算法才是我们需要的,也就是所谓的成熟的处理与分析算法。因此,在设计处理算法时,需要充分分析人的判断过程,并将其转换成计算机的语言。
3.可操作性好
可操作性好主要要求检测设备的应用操作要具备简洁、方便并易于理解的特点。比如系统有友好的人机交互界面、良好的导向性操作设计等。
4.稳定的其他配套设施
其他配套设施指的是除了检测系统以外的设施,如传输控制平台、缺陷处理装置(剔除、报警、标记等)。对配套设施的要求是必须运行稳定、信号响应及时、迅速。
八、机器视觉系统设计难点
第一:打光的稳定性
工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求最高,因为光照只要发生10-20%的变化,测量结果将可能偏差出1-2个像素,这不是软件的问题,这是光照变化,导致了图像上边缘位置发生了变化,即使再厉害的软件也解决不了问题,必须从系统设计的角度,排除环境光的干扰,同时要保证主动照明光源的发光稳定性。当然通过硬件相机分辨率的提升也是提高精度,抗环境干扰的一种办法。
第二:工件位置的不一致性
一般做测量的项目,无论是离线检测,还是在线检测,只要是全自动化的检测设备,首先做的第一步工作都是要能找到待测目标物。每次待测目标物出现在拍摄视场中时,要能精确知道待测目标物在哪里,即使你使用一些机械夹具等,也不能特别高精度保证待测目标物每次都出现在同一位置的,这就需要用到定位功能,如果定位不准确,可能测量工具出现的位置就不准确,测量结果有时会有较大偏差。
第三:标定
一般在高精度测量时需要做以下几个标定,一光学畸变标定(如果不是用的软件镜头,一般都必须标定),二投影畸变的标定,也就是因为安装位置误差代表的图像畸变校正,三物像空间的标定,也就是具体算出每个像素对应物空间的尺寸。不过目前的标定算法都是基于平面的标定,如果待测量的物理不是平面的,标定就会需要作一些特种算法来处理,通常的标定算法是解决不了的。此外有些标定,因为不方面使用标定板,也必须设计特殊的标定方法,因此标定不一定能通过软件中已有的标定算法全部解决。