转基因大豆发展现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转基因大豆发展现状
摘要:大豆起源于中国,不仅是人类主要的油料作物和植物性蛋白来源,而且是重要的工业原料,在我国粮食安全及国民经济中占有重要地位。人们对大豆的需求量逐年增加,但与玉米、水稻等禾谷类作物相比,大豆绝对产量很低,如按能量转换计算,大豆产量只有玉米的1/3,加上大田除草等工作量大,导致大豆比较效益低,制约大豆生产。育种工作者利用杂交、诱变等手段已培育大量优良新品种,但进步相对较慢,不能满足人类对大豆产量和品质的需求。但大豆生产受病、虫害和干旱等不利因素的影响,产量很不稳定,虽然常规育种技术在抗性品种中发挥了重要作用,但是由于受物种间杂交不亲和性及与不良性状连锁等因素影响而难以利用, 使常规育种受到了限制,因此,现代生物工程技术可以打破生物之间的界限来实现遗传物质的重新组合,因而可按照人类预先设计来改造生物,成为解决农业问题的一条重要出路。大豆比其它作物在遗传操作技术的某些方面难度较大,但随着现代生物技术的飞速发展,大豆的生物技术研究取得了较大的突破。80年代以来,已分别建起细胞、组织和原生质体水平的植株再生体系。
关键词:转基因大豆外源基因遗传转化方法
1转基因大豆类别
1.1抗虫转基因大豆
农作物害虫给农业生产带来严重的危害。在世界范围内,虫害造成的损失约占农作物总收获量的13%,每年大约损失数千亿美元大豆生育期间受害虫侵害严重,常给大豆生产造成巨大损失。大量喷施化学杀虫剂,不仅会增强害虫的抗药性,使益虫及其它生态区系遭受破坏,而且严重污染环境,提高生产成本,破坏生态平衡。常规的育种时限较长,但利用生物工程技术可缩短时限,并且局限性小。抗虫转基因研究涉及到来自苏云金杆菌的Bt基因和豇豆胰蛋白酶基因。
1.1.1含苏云金杆菌的Bt基因的转基因大豆
Bt基因是苏云杆菌(Bacillus thuringiensis)杀虫结晶蛋白(insecticidal crystal protein,ICP)基因的简称,ICP通常以原毒素的形式存在,当昆虫取食ICP后,在昆虫的消化道内,原毒素被活化,转型为毒性多肽分子。活化的ICP与昆虫肠道上皮细胞上面的特异性结合蛋白结合, 结合以后,ICP全部或部分嵌合于细胞膜中,使细胞产生一些孔道,从而导致细胞由于渗透平衡被破坏而破裂。伴随着上述过程,昆虫将停止进食,最终导致死亡。
我国的大豆外源抗虫基因研究起步晚,发展比较慢。1997年,徐香玲等以Ti 质粒为介导,将Pkt54B7C5质粒上的Btk-D内毒素蛋白基因导入东北大豆/黑农370、/黑农390等品种。采用多种外植体和感染方法,从胚轴和子叶节诱导出丛生芽和再生植株[1]。1999年,苏彦辉等利用苏云金芽孢杆菌(Bacillus thuringiensisBerliner)杀虫晶体蛋白(Bt)基因和葡糖苷酸酶(GUS)基因通过基因枪轰击和根癌土壤杆菌(Agrobacterium tumefaciens(Smith et Townsend) Conn)介导转入大豆(Glycine max(L.) Merr.),诱导大豆转基因植株再生[2]。
1.1.2豇豆胰蛋白酶抑制剂的转化
豇豆胰蛋白酶抑制剂是天然的抗虫物质。与苏云金杆菌毒蛋白相比,具有抗虫谱广,对人无副作用以及害虫不易产生耐受性等优点。豇豆胰蛋白酶抑制剂是由设在尼日利亚的国际热带作物研究所(ÒTA)从几千份豇豆资源材料中筛选得到的一份抗豆象蝉材料-TAu2027中得到的。它是由约80个氨基酸组成的多肽,其产物可抑制昆虫消化道中的消化酶,使昆虫取食后不能演化吸收营养物质而饿死。
1.2抗病转基因大豆
1.2.1CP基因
CP基因是指病毒外壳蛋白(virus coat pro-tein)基因,外源的病毒外壳蛋白基因导入植物细胞后,可使植物细胞获得保护作用,减少发病或延缓发病。大豆在我国北方由于花叶病毒的危害,严重影响产量(可减产10一17%)与质量(褐斑
粒)。大豆的抗花叶病毒是属于马铃薯y 组病毒的一个成员,两者具有同源性。
1993年,徐香玲和刘伟华用的表达载体为PBCY 一401 ,带有NPT五和PvY 一CP基因,用发恨农杆菌(Agrobacterium rhizogenes)R1000(pRiA4b)作为受体[3]。
1.2.2几丁质酶
几丁质酶(chitinase)存在于植物和微生物中,为单基因编码,具有降解几丁质的作用.由于许多危害植物的病原真菌的细胞壁主要成份之一是几丁质,而植物中还未发现几丁质的底物,所以,几丁质酶在防御病原菌侵害中具有重要作用。病原真菌细胞壁中几丁质的降解,不仅破坏细胞新物质的沉积,致使病原体死亡,而且产生的细胞壁碎片具有诱导物作用,从而刺激寄主植物的抗病反应。
徐香玲等以大豆下胚轴为外植体用农杆菌介导法和花粉管通道将几丁质酶基因转入大豆,并得到了整合的分子证明[4]
1.3抗除草剂转基因大豆
作物抗除草剂的基因工程是国际上植物基因工程研究领域中的活跃中心之一。阿特拉津(Atrazine)是玉米生产中广泛使用的除草剂,对玉米无害,效果良好。1983年国外就有人提出将杂草中的抗阿特拉津基因转移到作物中的设想,国外研究表明, 对阿特拉津的抗性是由叶绿体抗阿特拉津的psbA基因调控的, 该基因编码叶绿体类囊体膜上的究KD蛋白,并参与光合系统I中的电子传递链过程。[5]
在转基因作物中, 大豆一直独占鳌头, 2007年转基因大豆面积为5 860万hm2, 占全球大豆总面积的61. 7%。占所有转基因作物面积的51%, 而在此前的若干年中一直占60%以上, 即所谓的两个60%。。在所有转基因作物中, 抗除草剂的占63%, 为7 200 万hm2,其中抗农达大豆占81%[6]。
1988年,刘伯林等选用夏大豆(Glycine max)新品系作受体植物。在开花后一天内用自制微量注射器将抗性基因DNA溶液注人子房内.DNA从pSB135质粒
中提取, 该质拉含龙葵抗性基因的叶绿体DNA片段。在对叶片徐抹阿特拉津的鉴定中, 未注射抗性基因的后代对八阿特拉津水溶液敏感, 叶片涂药液后很快出现褐色斑点, 然后变黄、枯萎,6一10天后脱落。在注射抗性基因的第一代植株中, 出现了涂药后叶片生长正常的植株, 其叶色及光合作用功能正常, 表现出对阿特拉津的抗性。在温室中对少数子二代植株进行了初步鉴定, 表型和分子鉴定结果表明抗性基因可以遗传[7]。1986年,傅骤哗等将抗Atrazine龙葵(SOlanum nigrum )中的psbA 基因用直接注射法导人大豆, 经叶片涂抹Atrazine,荧光诱导动力学变化检测。接着傅骤哗等于1990年设计了田间喷施Atrazine液的试验,以检测抗性植株能否经受住药液的侵袭,试验获得了一定结果[8]。、
20世纪90年代,美国掀起了一股推广应用耐除草剂大豆品种的热潮。耐除草剂大豆品种,主要是指耐磺基脲类除草剂( STS) 和耐草甘膦类除草剂。这两类大豆品种,分别由美国杜邦公司和蒙三都公司于1994年和1995年通过生物技术(转基因技术)和常规育种技术培育出来的。1999 年,艾格福公司还将推出两个耐Liberty的大豆品种。美国培育的耐草甘膦大豆品种已达600多个,可在多种生产条件下种植。耐草甘膦品种的配套除草剂超级草甘膦( Roundup Ultra)是孟三都公司生产的安全有效与快速吸收传输产品,被誉为世界上最可信赖的除草剂[9]。草甘膦( G lyphosate)是孟山都公司研制的一种灭生性除草剂, 商品名为农达( Roundup) , 优点是杀草谱广, 对人畜低毒, 易被土壤吸收, 残效期短, 对环境的污染小。但由于没有选择性, 实际应用受到限制。
1.4高品质转基因大豆
大豆是一种重要的油料作物,与其他粮食作物相比,富含蛋白质。有的大豆品种蛋白质含量高达50%。大豆种子蛋白主要有7s和11s蛋白组成。
1991年,安永强等将大豆种子7s贮藏蛋白α’亚基基因通过改装Ti质粒的农杆菌(Agrobacterium tumefaciens)感染转化烟草叶片,并使转化组织再生成完整植株。通过Southern杂交证明,α’亚基基因已插入烟草基因组中。ELISA分析证明,转基因植株种子中α’亚基蛋白的含量显著高于非转化植株