图像去噪处理毕业论文设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
录
1 1图像去噪的研究意义与背景 (2)
1.1数字图像去噪研究意义与背景 (2)
1.2 数字图像去噪技术的研究现状 (3)
2 邻域平均法理论基础 (3)
2.1 邻域平均法概念 (3)
3 中值滤波法理论基础 (3)
3.1中值滤波法概念 (3)
3.2中值滤波法的实现 (4)
4中值滤波法去噪技术MATLAB仿真实现 (4)
4.1Matlab仿真软件……………………………………………………………………
4
4.2中值滤波法的MATLAB实现 (5)
4.3邻域平均法的MATLAB实现 (6)
总结 (8)
全文工作总结 (8)
工作展望 (8)
参考文献 (9)
英文摘要 (10)
致谢语…………………………………………………………………………………
11
图像去噪处理的研究及MATLAB仿真
电本1102班姓名:杨韬
指导老师:刘明军摘要:图像是生活中一种重要的信息来源,通过对图像的处理可以帮助我们了解信息的内在信息。数字图像去噪声涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系非常完善,且其应用很广泛,在医学、军事、艺术、农业等都有广泛且充分的应用。MATLAB 是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。
本文概述了邻域平均法与中值滤波法去噪的基本原理。对这两种常用的去噪方法进行了分析比较和仿真实现。最后根据理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际工作中的图像处理,去噪方法的选择和改进提供了数据参考和依据。
关键字:邻域平均法;中值滤波法;MATLAB
引言
图像因为一些原因总会被外界干扰,所以图像质量往往不是很好,而质量不好的图片又不容易进行进一步的处理。在对图像的地处理过程中,图像去噪是很重要的一个环节,所以想对图像进行进一步的处理,对图像的去噪就变得重要起来,所以很多研究人员对这一课题进行了比较全面的研究,图像的处理最传统的方法是在空域中的处理,也就是说在图像的空间范畴内对图像质量进行改善。也可以对图像进行平滑处理等,这属于第一类图像处理方法。
中值滤波法与邻域平均法是出现最早的去噪手段,而且由于其具备良好的空频特性,实际应用也非常广泛。其中图像的邻域平均去噪方法是众多空域图像去噪方法中效果最好的去
噪方法。基本思想就是用邻近的像素平均值来代替噪声的像素,且图像尺寸越大,去噪效果越好,从而达到较好的去噪目的。而且,邻域平均法本身是一种非线性变换,而国内外的研究大多集中在如何选取一个合适的相邻点,通过选取一个最为适合的邻域点使得去噪效果更加明显,传统的方法对于类似于高斯噪声的效果较好,所以此方法多用于去除高斯噪声。
本文以图像去噪方法为研究对象,以邻域平均法与中值滤波法为研究方向,对比了这两种传统去噪方法,比较深入地研究了基于MATLAB邻域平均法图像去噪,对其在图像去噪中的应用做了进一步研究。
1 图像去噪背景与意义
人的主要接受信息的手段就是视觉,虽然人类也有其他感官但是绝大部分(约80%)还是依靠眼睛看到外界的情况来进行信息接受的。我们对图像进行的各种加工就是为了满足我们的眼睛对图像清晰度的要求的。因此,图像处理技术的广泛研究和应用是必然的趋势。在分析和使用图像之前,需要对图像信号进行一系列处理。比如调整图像存储的格式,对图像进行去噪等等,对图像的处理因为所涉及的目的不同、所以也要求采用与所要达到的目的相对应的处理方法。而其所使用的方法常常涉及到现代最前卫的现代科学,如数学、物理学、计算机科学、通信、信号分析等。
在这篇论文中因为理论知识有限,所以只研究几种传统的去噪方法。在图像的产生和在信道中传播时,信号必定会因为某些原因掺入杂质信号。所以,为了提高图像的质量而寻求一种行之有效的去噪方法也是人们一直在进行的工作。
1.1数字图像去噪研究意义与背景
1.1.1图像去噪的研究意义
现实中的所用信号在传输和产生过程中不可避免的会夹杂一些噪声,这一点是无法避免的,所以怎么除掉或减少在接受图像信号时的噪声就成为了唯一的去噪方法我们把它称之为图像去噪,在图像去噪之前我们先要建立一个含噪图像的模型,为了简便,我们以下面的式子为例:
(1-1)表示图像,为噪声,含噪图像记为。
因为噪声的产生是无法避免的,而想对图像进行进一步的处理加工又需要不掺杂噪声的图像信息,去噪就成为了唯一的解决办法,这也是图像去噪这一课题的研究意义。
1.1.2图像去噪的研究背景
在21世纪,信息化高度发展,人类接触的信息不再是单纯的语音信号,更多的接触的是图像信号,因为人接受信息的主要来源是眼睛接触的图像信息,视觉也是人类最主要的接受外界信息的信息源,所以对图像质量的要求就变得越来
越严格,这就成了图像去噪发展的契机,随着人们的研究的不断深入,很多种方
法渐渐被研究人员发现,图像去噪技术也越来越完善。
现今图像去噪已经是一个研究比较深入的科目,涉及的范围也非常广泛,包括在军事,医疗等各个方面都有很大的帮助。
1.2数字图像去噪技术的研究现状
现实生活中的图像信号都会或多或少带有一些噪声信号这是无法避免的,所以消除噪声的唯一办法就是去噪,根据图像、噪声的特点,科学家们已经提出了多种去噪的方法,随着现代科学的发展与进步与人们的研究又有一些新的方法被提出,例如利用模糊指标的概念所提出的一种自适应中值滤波法以及采用模糊加权法对均值滤波法进行了改进。
以上提出的去噪法自身也都存在一些缺点,例如对多种噪声同时对图像信号干扰的情况,上述两种方法的结果就不是很理想,因为在去除噪声的同时也平滑的图像的细节,使图像细节变得模糊,图像质量下降,因此图像去噪这一课题还有非常大的研究价值。
2邻域平均法理论基础
2.1邻域平均法概念
邻域平均法是一种局部的空间域处理办法。通常可以用下式得到处理后的图像:
(2-l)式中;s是以点为中心的邻域的集合,M是s内坐标总数。
邻域平均法去噪后得到的图像其清晰度和所用的邻域的半径密切相关,其图像的迷糊程度与半径成正比。另外,邻域平均法去噪计算简单,快捷。
但是此方法也存在缺点,那就是在去除噪声的同时图像也变得模糊,尤其是边缘和细节,邻域与模糊程度也是呈正比的。
3中值滤波法理论基础
3.1中值滤波法概念
中值滤波法是一种非线性的去噪方法,它是把原来图像的信息点的灰度用这个点某个邻域内所有点的中值代替。
在实际应用中,随着所选用窗口长度的增加,滤波的计算量将会迅速增加。因此,寻求中值滤波的快速算法,是中值滤波理论的一个重要研究内容。中值滤