QD20燃气轮机原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QD20燃气轮机机组
第 1章概述
1.1 燃气轮机简介
燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。
走马灯是燃气轮机的雏形我国在11世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。15世纪末,意大利人列奥纳多·达芬奇设计的烟气转动装置,其原理与走马灯相同。
现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。图1-2为开式简单循环燃气轮机工作原理图。压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。
燃气轮机动力装置是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。为了保证整个装置的正常运行,除了主机三大部件外,还应根据不同情况配置控制调节系统、启动系统、润滑油系统、燃料系统等。
燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。
燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;二是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简
单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。
自 20 世纪60 年代首次引进6000kW燃气轮机发电机组以来,我国已建成不少烧油气的燃气轮机及其联合循环发电机组。但由于我国一次能源以煤为主的消费结构,并受到规定的“发电设备只准烧煤”的前燃料政策的制约,目前我国燃气轮机在现有发电设备装机容量中,占有量很小,只有700 万kW左右,且绝大部分为进口的。但发展速度很快,正在建设和计划的就超过800万kW,正在建设的一批大型35万kW级燃用天然气的联合循环电站。随着天然气和液体燃料在一次能源中比例的上升和燃气轮机燃煤的技术成熟之后,燃气轮机在我国发电设备中的比例将会愈来愈大。研究表明,由于燃气轮机在效率、环保和成本方面的优势,我国在电站基本负荷发电、老电站技术更新改造、洁净煤发电技术、石油与天然气的输运和高效利用以及舰船、机车交通动力等领域对燃气轮机都将有较大的需求。许多专家还强调燃气轮机在西部大开发中的重要性,国家构想实施的新世纪四大工程:西气东输,西电东送,青藏铁路,南水北调,前三个都与燃气轮机有关。总之,以燃气轮机为核心的总能系统也将成为我国跨世纪火电动力的主要发展方向,我国将是世界最大的燃气轮机潜在市场。
第2章燃气轮机热力循环
2.1热力循环的概念
热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循环;将机械功转换为热的循环,称为逆向循环。通过工质的热力状态变化过程,可以将热能转化成机械能而做功,而要做出功一般必须通过工质的膨胀过程,但是任何一个热力膨胀过程都不可能一直进行下去,并连续不断地做出功。这是因为工质的状态将会变化到不适宜继续膨胀做功的情况,而且任何热力设备,其尺寸也都是有限的。例如,通过定温膨胀或绝热膨胀过程做功时,工质的压力将降低到不能做功的水平,而工质的容积V又将增大到设备尺寸不能允许的程度,典型的例子是封存于气缸内的一定质量的气体,当其膨胀做功时,压力将不断下降,容积不断增加,而这个膨胀过程可能由于压力降得太低以至于无法继续做功,或者由于受到气缸尺寸的限制使得容积不能无限制地增大。因此,为使连续做功成为可能,工质在膨胀后还必须经历某种压缩过程,使它回复到原来状态,以便重新进行膨胀做功的过程。这种使工质经过一系列的状态变化,重新回复到原来状态的所有热力过程的组合就叫做一个循环。在状态参数的平面坐标图如压容图或温熵图上,循环的全部过程必定构成一条封闭曲线,其起点和终点重合(见图
2-1)。整个循环可以看作一个闭合过程,所以也称循环过程,简称循环。工质在完成一个循环之后,就可以重复进行下一个循环,如此周而复始,就能连续不断地把热能转化为机械能。
循环可以沿着两个方向进行,即上述的正向循环和逆向循环,本章侧重讨论正向循环,也称热力循环。汽轮机、燃气轮机等热机都是按正向循环工作的。循环的全部过程可以在一个气缸内进行,如柴油机循环(又称狄塞尔循环);也可以分别在几个部件内进行,如燃气轮机循环(布雷顿循环)。各种热动力设备采用的循环各不相同,各具特点,但他们的基本特征是相同的。现以闭口系统中
1kg工质的正向循环为例,说明正向循环的性质。
图2-1
图2-1在p-v图上示出了该循环,这个循环是一个抽象的、任意确定的正向循环。正向循环在状态参数坐标图上是按顺时针方向进行的。压容图上的循环过程,以循环的左、右两个端点(即比体积v最小的点1和最大的点2)为分界,把该循环分成上、下两段。在上边一段,从1-a-2的过程为膨胀过程,该过程的膨胀功以面积1-a-2-3-4-1表示。为了能使工质继续做功,必须将工质沿另一过程从2压缩回到1。显然,为了使工质在一个循环中能够对外界有净功输出,该压缩过程必须沿着一条较低的过程线,如图中2-b-1曲线所示,将工质从2压缩到1点,该过程消耗外功,消耗功的绝对值以面积2-b-1-4-3-2表示,其代数值为负值。这样,从1-a-2-b-1就完成了一个循环。单位工质完成一个循环对外做出的净功以w表示。显然,在图形上,表示该净功的面积为面积1-a-2-3-4-1减去面积
2-b-1-4-3-2,这正好就是封闭的循环过程曲线1-a-2-b-1所包围的面积。为了使工质在完成一个循环之后能够对外做出正的净功,循环中膨胀过程线的位置必须高于压缩过程线,以使膨胀功在数值上大于压缩功,如何做到这一点呢?参看图2-1左图,我们任取一个比体积v,过该点作横轴的垂线与膨胀过程线交于点5,与压缩过程线交于点6。为了使膨胀过程线在压缩过程线上方,必须有p5>p6,既然v是相同的,因此必然有T5>T6,其余各点情况都是相同的,因此,膨胀过程线上各点的温度都高于相同比体积时压缩过程线上相应点的温度(两端点1,2除外)。怎样做到这一点呢?我们可以使工质在膨胀过程中(或在膨胀开始前)与高温热源接触,并从中吸入热量,以保证膨胀过程中工质有较高的温度水平;而在压缩过程开始之前先将工质冷却,或在压缩过程中使工质与一冷源即低温热源相接触并对其放热,这样就可保证压缩过程中工质有较低的温度,从而保证压缩过程线位于膨胀过程线下方,使循环净功为正值。燃气轮机就是一个正向循环的例子:从高温热源吸热,输出机械功,并且要向低温热源放出热量。与正向循环比较可