铁路列车车轮失圆检测分析
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车轮 编号
1 -1# 1 -2# 1 -3# 1 -4# 1 -5# 1 -6# 1 -7# 1 -8# 2 -1# 2 -2# 2 -3# 2 -4# 2 -5# 2 -6# 2 -7# 2 -8# 3 -1#
表 4 报警车轮径跳、多边形情况
测量前是否报警
图 1 报警车轮信息
������27������
图 2 测量各阶多边形图例
表 2 各阶多边形车轮数量
随着运营里程增加ꎬ整体跳动水平增大ꎬ多边
低阶(0 -11)
第一次测量
9
第二次测量 14
低阶 + 高阶 (0 - 40) 0 4
高阶 (12 - 40)
0 1
形趋势在发展ꎬ同时发生报警的概率明显增加ꎮ 对报警和未报警车轮进行分组比较发现ꎬ车轮 报警与车轮径跳、多边形表现形式无明显对应关系 (图 3 - 图 5)ꎮ
徐 康ꎬ肖 峰ꎬ张 磊ꎬ鲁 松ꎬ宫彦华
( 马鞍山钢铁股份有限公司 安徽马鞍山 243000)
摘 要:20 世纪 90 年代以来ꎬ世界各国铁路对车轮的圆度加大检查力度ꎬ实施车轮径跳控制措施ꎬ但对问题产生的原因
还处于模糊状态ꎮ 对铁路列车车轮失圆进行检测和对比分析ꎬ发现随着车轮运行里程的增加ꎬ车轮径跳值明显增大ꎬ多边形 数量明显增多ꎬ且主要表现为低阶多边形ꎮ 同时ꎬ车轮报警与车轮径跳、多边形表现形式无明显对应关系ꎮ
收稿日期:2018 - 04 - 26 作者简介:徐 康(1987 - ) ꎬ男ꎬ马钢股份公司车轮公司ꎬ工程技术 人员ꎮ 工学硕士ꎮ
表现较好的车轮进行性能分析史ꎬ早期对车 轮失圆的检查有锤敲、耳听、眼看等ꎬ这些方法受人 为因素、故障发生的部位、现场工作条件等因素影 响ꎬ并且只能定性地对车轮踏面进行分析ꎬ无法定 量进行测量ꎮ 随着车轮失圆检测研究的深入ꎬ目前主要采用 车轮粗糙度测量仪对整车车轮进行不圆度测量ꎮ 不圆度测量的操作方法是:以奇数位车轮注油孔对 应的名义滚动圆处作为起点进行不圆度的测量ꎬ顺 时针方向旋转车轮ꎬ偶数位车轮测量起点位置与奇 数位车轮保持在同一位置ꎬ以此测量车轮失圆情况ꎮ
表 3 径跳和低阶多边形对应关系
径跳≥0. 5mm
低阶(0 - 11)
车轮数 / 个
多边形 / 个
第一次测量
0
0
第二次测量
12
14
3. 2 报警车轮情况分析 对比分析了报警( 包括预警) 与未报警车轮不 圆度、径跳情况ꎬ由表 4、图 3 - 图 5 可知: 随着运营里程的增加ꎬ报警车轮数量呈增多的 趋势ꎻ第一次测量前只有 3 件车轮出现了报警ꎬ之 后该 3 件车轮仍出现报警ꎻ另有 7 件车轮第一次测 量前未报警的ꎬ此后发展为报警ꎻ 报警车轮与未报警车轮的多边形占比、多变形 表现形式、径跳情况相当ꎮ
总第 80 期 徐 康ꎬ肖 峰ꎬ张 磊ꎬ鲁 松ꎬ等:铁路列车车轮失圆检测分析
ISO 3095 - 2013 « Acoustics - Railway applications - Measurement of noise emitted by railbound vehi ̄ cles» 得出了多边形粗糙度水平参考线ꎬ与测试结 果相比较ꎬ对车轮多边形情况进行判断ꎮ 按图 2、表 2、表 3 所示车轮多边形表现情况对 车轮多边形进行了分类分析ꎬ可知ꎬ 1)从第二次测量的结果来看ꎬ车轮多边形数 量明显增多ꎻ 2)从第二次测量的跟踪结果来看ꎬ车轮多边 形主要表现为低阶多边形ꎬ主要为 7 - 10 边形ꎬ部 分车轮伴有高阶多边形ꎻ 3)随着里程的增加ꎬ车轮径跳值明显增大ꎮ 4) 由表 3 可知径跳超 0. 5mm 的车轮中大都伴 有低阶多边形ꎮ
2 车辆基本信息
测试车辆基本信息如表 1ꎬ报警车轮信息如图 1ꎮ
表 1 测试车辆信息
测量次数 第一次 第二次
运用里程( km) 20000 70000
车轮镟修情况 无 无
3 结果分析
3. 1 整车车轮不圆度分析 采用车轮粗糙度测量仪对整车车轮进行不圆 度测量ꎬ 得出车轮不圆度的测试结果ꎬ 参考标准
关键词:车轮ꎻ失圆ꎻ检测 中图分类号:TG335. 6:TH161 + . 12 文献标识码:B 文章编号:1672 - 9994 (2018)02 - 0026 - 03
车轮失圆在铁路列车运行过程中是一个普遍 存在的现象ꎬ按照失圆的形式可以分为局部失圆 (如扁疤、擦伤和局部凸起等) 和全周失圆( 如车轮 多边形等) [1] - [3] ꎮ 全周失圆主要表现为偏心、椭 圆、三边形、四边形等ꎮ 车轮失圆会导致轮轨间产生一个特定的振动 频率ꎬ该频率 f 如下公式所示[4] : f = Nv / (2πR0 ) 式中: N— 车轮失圆的阶数ꎻ V—行车速度ꎻ R0— 车轮的滚动圆半径ꎮ 车轮踏面非圆化是一个复杂的过程ꎬ受很多因 素的影响ꎬ归纳起来ꎬ可分为两方面:一是车辆状况 和运行环境ꎬ二是车轮性能ꎮ 车辆状况和运行环境 包括线路养 护 条 件 差、 轮 轨 外 形 及 材 质 匹 配 不 合 理、转向架技术状态不良、牵引装载定数过大、列车 制动时制动力不均或过大使闸瓦没有缓解而引起 轮对在轨道上滑行或轮对在轨道上长期滚动等ꎬ车 轮性能主要指车轮本身的各种物理化学性能 等[5] ꎮ 国内外学者针对车轮失圆的诊断进行了大 量研究ꎬ但对车轮进行不圆度测试、对比分析并解 剖车轮进行性能分析研究较少ꎮ 本文旨在对铁路 同一列列车车轮的失圆情况进行对比分析ꎬ并解剖
第 28 卷第 2 期
安徽冶金科技职业学院学报
Vol. 28. No. 2
2018 年 4 月
Journal of Anhui Vocational College of Metallurgy and Technology
Apr. 2018
铁路列车车轮失圆检测分析