第11章换热器

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q
q
(11.19)
max
根据11.6b、11.7b、11.18,可得


Ch (Th ,i Th ,o ) Cmin (Th ,i Tc ,i )
Cc (Tc ,o Tc ,i ) Cmin (Th ,i Tc ,i )
(11.20)

(11.21)
根据定义可知,无量纲的有效度必定处于0≤ε≤1的范 围内。有效度的作用在于,如果已经知道ε、Th,i和Tc,i, 可以很容易由下式确定实际换热速度
换热器的类型
管壳式换热器:(a)一个壳侧流程和两个管侧 流程;(b)两个壳侧流程和四个管侧流程。
紧凑式换热器:由密集排列的带肋管或板 构成,通常用于至少有一种流体是气体的场 合,可在单位体积内获得非常大的传热表面 积。芯:(a)肋片-管(扁平管,连续的平板肋 片);(b)肋片-管(圆形管,连续的平板肋 片);(c)肋片-管(圆形管,环肋);(d)平板 -肋片(单流程);(e)平板-肋片(多流程)。
11.4 换热器分析:有效度-NTU法
在只有进口温度已知的情况下,采用对数平均温差法 就要进行比较复杂的迭代求解。在这种情况下可以采用另 一种称为有效度-NTU的方法。 换热器的最大可能换热速率可用如下通用表达式:
qmax Cmin (Th,i Tc,i )
(11.18)
式中,Cmin 等于Cc和Ch 中较小的一个。定义有效度ε为 换热器的实际换热速率与最大可能的换热速率之比:
(1 f )
(11.3)
式中,Af是所有肋片表面积;ηf是单个肋片的效率。 将肋片表面积之比表述为Af/A。这与3.6.5节不同,3.6.5 中这个比值为NAf/At ,Af 为单个肋片的面积,At 为总表 面积,如果采用长度为L的直肋或针肋,并假定肋端绝 热,则有:
f
tanh(mL) mL
11.1 换热器的类型 通常根据流动布置和结构类型对换热器进 行分类。 同心套管换热器:(a)顺流:流体从同一端进 入从同一端离开;(b)逆流:从相对两端进入, 从相对两端离开。 叉流换热器:(a)带肋片,两侧流体均不混合; (b)不带肋片,一侧流体混合而另一侧流体不 混合。 具有一个壳侧和一个管侧流程的管壳式换 热器(交叉-逆流运行模式)。
式中,下标c和h分别指冷流体和热流体,η0称为带肋片的表面 的总表面效率或温度有效度。它是这样定义的,对于没有污垢的热 或者冷表面,传热速率为
q 0 hA(Tb T )
(11.2)
总传热系数
式中,Tb为基面温度;A是总的表面积。在3.6.5节 中引入这个量,导出下式:
0 1
Af A

Tc,o Tc,i Th,i Th,o
(11.26)
式11.13可表示为
ln(
或由11.24有
Th ,o Tc ,o Th ,i Tc ,i
)
UA Cmin
(1
Cmin Cmax
)
Th ,o Tc ,o Th ,i Tc ,i
exp[ NTU(1
Cmin Cmax
)]
,,
系数分别为Up,h=hh/(1+hhR
,,
f,h)和Up,c=hc/(1+hcR f,c)。式11.3
,,
仍可用于计算热和/或冷侧的η0,但在计算相应的肋片效率 时必须用Up 取代h。很容易看出,如果分别用Up,c 和Up,h 取 代式11.1右侧第一和第五项中的对流系数,就可以去掉第 二和第四项。

q mh (ih,i ih,o )
(11.6a)
q mc (ic,o ic,i )
(11.7a)
式中,i是流体的焓。下标h和c分别指热流体和冷 流体,而i和o则是分别指流体在进口和出口处的情况。 如果流体没有进行相变且假定比热容为常数,这些表 达式可写成
换热器分析:利用对数平均温差
总传热系数
对于不带肋片的管式换热器,式11.1可写成
" " 1 1 1 1 R f ,i ln( Do /Di ) R f ,o 1 UA Ui Ai U o Ao hi Ai Ai 2 kL Ao ho Ao
(11.5)
式中,下标i和o分别指管的内、外表面(Ai=πDiL, Ao=πDoL),它们即可暴露于热流体,也可暴露于冷流 体。 可利用热流体和冷流体的对流系数、污垢系数以 及适当的几何参数确定总传热系数。
T Th Tc
(11.8)
这表达式是牛顿冷却定律的推广,其中要用总传热 系数U取代单一的对流系数h。由于在换热器中△T是随 位置而变化的,因此需要采用以下形式的速率方程
q UATm
式中,△Tm是一个适当的平均温度。
(11.9)
顺流换热器
顺流换热器温差在开始时很大,但随着x的增加而迅 速衰减,并逐渐趋近于零。在分析中做如下假定:1.换热 器与环境之间是绝热的,在这种情况下,只在冷热流体 之间有传热;2.沿管子轴向的热传导可以忽略;3.势能和 动能的变化可以忽略;4.流体的比热容恒定;5.总传热系 数为常数。 对各个微元体应用能量平衡关系,可得 和

(11.16)
逆流换热器
逆流换热器的温差随x的变化在任何地方都没有顺 流换热器入口区变化那么大,冷流体的出口温度可以 超过热流体的出口温度。式11.6b和式11.7b适合于任何 换热器,因此也适合于逆流换热器,11.14和11.15也适 用于逆流布置。但是逆流换热器的端点温度必须定义 为
T1 Th,1 Tc,1 Th,i Tc ,o T T T T T h ,2 c ,2 h ,o c ,i 2
(11.27)
重新整理此式的左边,再将11.26得到的Tc,o代入可得
Th ,o Tc ,o Th ,i Tc ,i
Th ,o Tc ,o Th ,i Tc ,i

(Th ,o Th ,i ) (Th ,i Tc ,i ) ( Cmin / Cmax )(Th ,i Th ,o ) Th ,i Tc ,i
11.2 总传热系数
在任何换热器分析中,总传热系数是最基本的,也常常是最难 以确定的。 在换热器运行过程中,表面有污垢增加流体的热阻,引入污垢 系数的附加热阻Rf来处理,它与温度、流体速度和换热器工作时间 有关。此外流体表面常常会不知肋片降低热阻,考虑这些因素后得 到总传热系数如下:
R" f ,c R" f ,h 1 1 1 1 1 Rw (11.1) UA U c Ac U h Ah 0 hA c 0 A c 0 A h 0 hA h
dq mhcp,hdTh ChdTh
dq mccp,cdTc CcdTc
(11.10) (11.11)
式中,Ch和Cc分别是热流体和冷流体的热容量流率。把这 些表达式沿换热器积分可以获得总的能量平衡。
穿过表面积dA的传热还可表示为
dq U TdA
(11.12)
式中,△T=Th-Tc是冷热流体之间的当地温差。
主要章节
11.1 换热器的类型 11.2 总传热系数 11.3 换热器分析:利用对数平均温差

11.3.1 顺流换热器 11.3.2 逆流换热器 11.3.3 特殊的运行状况 11.4.1 定义 11.4.2 有效度-NTU关系式
11.4 换热器分析:有效度-NTU法

11.5 换热器设计和性能计算:利用有效度-NTU法 11.6 紧凑式换热器 11.7 小结
为确定式11.12的积分形式,先把11.10和11.11代入11.8 的微分形式
d(T ) dTh dTc
可得
d(T ) dq( 1 1 ) Ch Cc
把dq用11.12代入并沿换热器积分,可得
2 1 1 ln( T1 ) UA( Ch Cc ) T
(11.13)
q UA
适当的平均温差是一个对数平均温差△Tlm。可 以写出
q UATlm
(11.14)
顺流换热器
其中
Tlm T2 T1 T1 T2 ln(T2 / T1 ) ln(T1 / T2 )
(11.15)
对于顺流换热器,有

T1 Th ,1 Tc ,1 Th ,i Tc ,i T2 Th ,2 Tc ,2 Th ,o Tc ,o
顺流换热器
分别用11.6b和11.7b中的Ch和Cc代入上式,可得
T2 T1
ln(
) UA [(Th ,i Tc ,i ) (Th ,o Tc ,o )] q
对于顺流换热器,有△T1=(Th,i-Tc,i)和△T2=(Th,oTc,o),因此有 T2 T1 ln( T2 / T1 )
(11.4)
式中,m=[2h/(kt)]1/2,t是肋片的厚度。
总传热系数
前面已经指出,式11.2适用于污垢可忽略的情形。但
是,在污垢有重要影响的时候,式11.2中对流系数必须替 换为部分总传热系数,其形式为Up=h/(1+hR f)。Up之所以 被成为部分系数是因为它只包括了与一种流体及其相邻表 面有关的对流系数和污垢系数。因此,热侧和冷侧的部分
Cmin Cmax
(11.17)
特殊的运行状况
换热器的一些特殊运行状态是有益的。当热流体的热容 量流率 Ch mhcp,h 远大于冷流体的热容量流率 Cc mccp,c 。这种 情况下,热流体的温度在整个换热器近似保持为常数,而冷 流体的温度则是增加的。如果热流体是正在冷凝的蒸气,也 会出现相同的情形。凝结是在恒定的温度下发生的,对于所 有的实际应用来说,有Ch趋近于无穷。相反,在蒸发或锅炉 中,发生相变的是冷流体,它基本上处于均匀的温度。如果 Ch<<Cc。在没有相变的情况下也会得到相同的效果。在发生 凝结或蒸发的情况下,传热速率由11.6a或11.7a给出。第三种 特殊情况涉及到热容量流率相等的逆流换热器。这样,换热 器的温差必定为常数,在这种情况下有△T1=△T2=△Tlm。 虽然多流程和交叉换热器中的流动情形较为复杂,但仍 可用11.6、11.7、11.14、11.15,只要对对数平均温差的定义 做些修改。
NTU
UA Cmin
(11.24)
11.4.2 有效度-NTU关系式
为确定有效度-NTU具体形式,考虑一个顺流换热器, 其中Cmin=Ch。由11.20有


Th ,i Th ,o Th ,i Tc ,i
(11.25)
且由11.6b和11.7b可得
C min C max mh c p ,h mc c p ,c
11.3 换热器分析:利用对数平均温差
为设计换热器或预测其性能,必须建立总传热速 率与流体进出口温度、总传热系数以及总传热表面积之 类的量之间关系。对热流体和冷流体应用总的能量平衡 可以很容易的获取两个这样的关系式。如果用q表示冷 热流体之间的总传热速率,并假定换热器与环境之间的 传热以及势能和动能之间的变化是可以忽略的,应用稳 态流动能量方程可得
q mh cp,h (Th,i Th,o )

(11.6b) (11.7b)
q mccp,c (Tc,o Tc,i )
在这些表达式中出现的温度指流体在指定位置处的平 均温度。式11.6和11.7与流动布置及换热器类型无关。
把总传热速率q与冷热流体之间的温差△T联系起来可 获得另一个有用的表达式,其中△T为
q Cmin (Th,i Tc,i )
(11.22)
对于任何换热器都有
f (NTU,
C min源自文库C max
)
(11.23)
式中Cmin/Cmax 等于Cc/Ch 或Ch/Cc ,这与冷热流体的 热容量流率的相对大小有关。传热单元数(NTU)是一个 广泛应用于换热器分析的无量纲参数,其定义为:
第11章 换热器
LOGO
换热器的概念 在很多工程应用中都存在处于不同温度且被 固体壁面隔开的两种流体之间的换热过程。用 于实现这种换热的装置就叫做换热器,在供暖 和空调、动力生产、废热回收以及化工过程等 领域中均可找到其具体应用。 本章的目的是引入一些用于评估换热器功效 的性能参数,并建立设计换热器或预测在给定 工况下运行的已有换热器的性能的一些方法。
相关文档
最新文档