烃类裂解制乙烯的研究进展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烃类裂解制乙烯催化剂研究进展

摘要:综述了烃类裂解制乙烯的生产主要采用蒸汽裂解法和烃类裂解制乙烯酸性催化剂研究,介绍了金属氧化物、复合金属氧化物、金属盐类催化剂以及引用较多L酸中心的酸性分子筛催化剂,同时给出了各种催化剂所达到的收率、选择性、反应温度及其它工艺条件.讨论了烃类催化裂解制乙烯的反应机理和特点,从理论上分析了高温、蒸汽和有较多L酸中心的酸性分子筛催化剂对乙烯收率的影响,并提出了开发建议.

关键词:烃类裂解乙烯催化剂

裂解反应规律:

按反应进行的先后顺序,可以将反应划分为一次反应和二次反应。

一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。

二次反应主要是指由一次反应生成的低级烃进一步反应生成多种产物,直至最后生成焦或碳的反应。显然,二次反应不仅降低低级烯烃的收率,而且生成的碳和焦会堵塞管道和设备,是不希望发生的反应。

烃类裂解反应机理和动力学:

(1)链引发——这是裂解反应的开始,烷烃引发主要是断裂C-C键,而对C-H键的引发较小。

(2)链的增长反应一一可分为两种反应,即自由基的分解反应和自由基的夺氢反应。(3)链终止反应—一自由基与自由基结合成分子的反应。

乙烯的生产主要采用蒸汽裂解法,其产量超过总产量的90%,因而,对其新工艺、新设备的研究、新材料的应用、过程的优化配置等方面倍受关注,不断推出原料适应性强、乙烯收率和热效率高的新型蒸汽裂解炉。目前,石脑油裂解温度已提高到840~860℃,单程

小直径炉管裂解温度巳提高到900℃,石脑油裂解单程乙烯收率提高到28%~35%。由于蒸汽裂解法技术已日臻完善,可改进的余地并不大,加上该法反应温度高、所用耐高温合金材料昂贵、耗能高、易结焦、以及原料要求苛刻(轻质原料油),所以近年来,催化工作者将更多的注意力转向用其他新技术生产乙烯的研究,包括催化裂解制乙烯技术、甲烷氧化偶联技术、乙烷氧化脱氢技术、炼厂干气选择氧化技术、天然气经甲醇或二甲醚制低碳烯烃技术等。这些技术的目的在于优化乙烯原料资源配置,从天然气到重油(渣油)各种烃类都得到充分利用,并节能降耗,降低乙烯成本,提高乙烯收率。

催化裂解制乙烯是在高温蒸汽和酸性催化剂存在下,烃类裂解生成乙烯等低碳烯烃的技术。该过程是以自由基反应为主,伴随着碳正离子反应,因而比蒸汽裂解反应温度低。通过对固体酸催化剂的改性,可选择性地裂解生成以乙烯为主的低碳烯烃,收率在50%以上,从而突破传统的催化裂化生产液相产品为主的技术路线。

催化裂解制取低碳烯烃的研究始于上世纪60年代,到80年代仅有前苏联半工业化生产试验的报道,以及2000年日本工业化报道。石油化工科学研究院从80年代中期开始了重油催化裂解制丙烯技术,近年来又开始研究重油催化裂解制乙烯技术,也有相当的进展。洛阳石油化工工程公司炼制研究所于80年代末开展了对重油直接催化裂化制乙烯工艺和催化剂的研究工作,现已进入工业化试验阶段。

烃类催化裂解制轻烯烃是一种有吸引力的技术,到目前为止,国内外已发表了许多研究结果和专利,其研究的目标如下:

(1)提高烯烃的选择性以减少原料消耗;

(2)降低反应温度,降低烯烃生产的能耗;

(3)增加裂解反应产品分布的灵活性,不但可提高乙烯收率,亦可增加丙烯收率;

(4)提高乙烯装置对原料的适应性,提供能加工重质烃类馏分生产轻烯烃的技术,因为重烃直接用于管式炉热裂解是很困难的。

催化裂解主要致力于催化剂的开发,此类催化剂应具有高活性和选择性以及低的氢转移活性,既要保证比热裂解过程中的乙烯等低级不饱和化合物收率更高,甲烷和液体产物更低,同时还要具有高稳定性和强度,而且应结焦少,以保证长周期运转。国外催化裂解制乙烯专利中申请的催化剂大致可分为三大类:

(1)无定性和结晶型硅铝酸盐类常规裂解催化剂;

(2)碱或碱土金属铝酸盐化合物;

(3)在不同载体上载有不同金属氧化物的催化剂,载体有氧化铝、浮石及无定性和结晶型(沸石)硅酸铝等。

烃类裂解制乙烯非酸性催化剂

烃类裂解制乙烯研究工作始于二十世纪60年代,研究核心是开发合适的催化剂,揭示非均相裂解机理及载体与催化剂之间的相互影响。各种催化剂在700~750℃间可获得高乙烯收率,重点是解决催化剂的稳定性和结焦后催化剂的再生问题。

有文献报道,以钒酸钾为催化剂,比表面积小(<1m2/g)、氧化硼改性的α—氧化铝大孔陶瓷(孔径10、15μm)为载体,所用的原料为沸程42~180℃的直馏汽油、汽油—催化重整抽余油(40~150℃)和宽馏份轻烃,进行了半工业试验研究。结果表明:

(1)该催化剂适用于各种馏分和组成的气体和裂解原料。

(2)催化剂加速了烃类裂解,提高了乙烯选择性,与热裂解相比活化能降低60~

80kJ/mol。

(3)催化裂解按自由基机理和按均相—非均相机理进行,一次断裂键为均相和非均相,二次转化主要为非均相反应。

(4)汽油在空速3~3.5h-1、稀释蒸汽(质量分数)60%~75%条件裂解时,适宜的裂解温度为780~785℃,丙烯在760℃达到峰值;停留时间为0.1~0.2s时乙烯、丙烯收率最高。可见,其最佳裂解温度比热裂解要低30~60℃。

(5)汽油裂解运行2000h,焦炭为12%(以催化剂计),此结焦量可与热裂解过程的结焦情况相比拟。

(6)催化剂在最佳条件下运行5000h,未发现催化剂活性下降,可见稳定性很好。

(7)催化剂总使用寿命为3年,再生周期为1500~2000h,可用含少量氧的蒸汽—空气再生,再生时间为24~30h。

前苏联古比雪夫合成醇厂将原处理量为4t汽油/h的高温热裂解炉改为催化裂解炉后,裂解温度由830℃降为780~790℃,停留时间从O.6~0.7s缩短至0.1~0.2s,而乙烯收率从26%提高到34.5%,丙烯收率从14.6%增加到17.5%。

HCC工艺借鉴了成熟的重油催化裂化工艺技术,采用提升管反应器(或下行管式反应器)来实现高温(660~700℃)、短接触时间(<2s)的工艺要求,所用的催化剂可选自SiO2、Al203、MgO、CaO、BaO、ZrO2、MnO2、TiO2化合物及其混合物。也可采用经碱性或碱土金属氧化物改性的硅酸铝(天然的或人工的)。此外,还可以加入部分八面沸石或经Ⅷ族、ⅦB族、ⅥB族金属离子交换的八面沸石。为了满足HCC工艺的要求,该催化剂必须具有较好的裂化活性、裂解选择性和焦炭选择性,适当的孔体积、孔径分布和比表面积及较强的抗重金属污染的能力,良好的机械强度、水热稳定性和流态化性能。

在中型提升管试验装置上,用LCM-5放大样品考察四种重质原料油的裂解性能。在优化工艺条件下的裂解试验结果表明,三种渣油中,ATB-1的裂解性能最好,在相对缓和的工艺条件下,乙烯产率25.95%,丙烯产率14.09%,C2~C4总烯烃产率达到46.64%。另外两种渣油的裂解性能略差。试验选用的直馏馏分油的乙烯和丙烯产率分别达到27.74%和

相关文档
最新文档