国内外光纤通信系统发展现状和未来趋势

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文题目:国内外光纤通信发展及未来趋势

中文摘要:本文主要讲述光纤通信的产生过程及光纤通信的特点。同时具体写我国光纤通信的发展及世界光纤通信发展趋势英文摘要:This article mainly described the generating process and optical fiber communication optical fiber

communication features. At the same time our

optical fiber communication of specific writing

development and the optical fiber communication

development trend

论文正文:

生活中光无处不在。而且光也有很多不同的作用,比如在通信中的作用。

打手势也是一种目视形式的光通信,在黑暗中不能进行。白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。

同时早在几千年前,我国的火光通信(也叫做烽火台)也是一种著名的光通信。其中较著名的有周朝的骊山烽火台,秦汉的长城烽火台,城上每隔一定距离设一个报警烽火台,一旦发现敌人入侵,白天燃烟,夜间举火,利用火光来传送军事情报。这种利用烽火台来传送军事情报,就是古代的光通信方式。

1880年,贝尔发明了一种利用光波作载波传递话音信息的“光电话”,它证明了利用光波作载波传递信息的可能性。他利用太阳光

作光源,大气为传输媒质,用硒晶体作为光接收器件,成功地进行了光电话的实验,通话距离最远达到了213米。1881年,贝尔宣读了一篇题为《关于利用光线进行声音的产生与复制》的论文,报道了他的光电话装置。贝尔的光电话和烽火报警,都是利用大气作为光通道,光波传播易受气候的影响,在有雾的天气里,它的能见度很小,遇到下雨下雪天影响就更大了。因此气候不好,光电话常常不能使用,这就限制了它的发展。

激光器出现之前,光学中普遍使用普通的相干性较差的普通光源,这种光源谱线很宽,无法进行通信。1960 年,美国科学家梅曼(Meiman)发明了第一个红宝石激光器。与普通光相比,激光谱线很窄,方向性及相干性极好,是一种理想的相干光源和光载波。由激光发展起来的激光通信有高度的相干性和空间定向性,通信容量大、体积较小并且有较高的保密性。所以激光是光通信的理想光源,它的出现是光通信发展的重要一步。

激光器和光纤的发明,使人们看到了光通信的曙光。而要实现光纤通信,还需要在激光器和光纤的性能上有重大的突破。但是在这两方面的突破遇到了许多困难,尤其是光纤的损耗要达到可用于通信的要求,从每千米损耗1000 分贝降低到20 分贝似乎不太可能,以致很多科学家对实现光纤通信失去了信心。就在这种情况下,出生于上海的英藉华人高锟(K.C.Kao)博士,通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想。他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传

输。1966年7 月,高锟就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000 分贝降低到20 分贝/公里,从而有可能用于通信。这篇论文使许多国家的科学家受到鼓舞,加强了为实现低损耗光纤而努力的信心。

同时由于光纤的发展,光纤系统也渐渐发展起来。1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。1980年,美国标准化FT-3 光纤通信系统投入商业应用。1976 年和1978 年,日本先后进行了速率为34Mb/s 的突变型多模光纤通信系统,以及速率为100Mb/s 的渐变型多模光纤通信系统的试验。1983 年敷设了纵贯日本南北的光缆长途干线。随后,由美、日、英、法发起的第一条横跨大西洋TAT-8 底光缆通信系统于1988 年建成。第一条横跨太平洋TPC-3/HAW-4 海底光缆通信系统于1989 年建、成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。

光纤通信是利用光作为信息载体.以光纤作为传输媒质的通信方式。实现光纤通信除了需要将传统多样的电信号转换为光信号的装置.还需要有传输光信号的介质以及将光信号转换为电信号的装置。所以在光纤通信中有3个主要的技术问题:便于应用且性能优良的光源;能长距离传输光信号的传输介质:灵敏地接收光信号并能把光信号转化为电信号的光检测器。光源是光纤传输系统的心脏部件.它的功能是实现电,光转换.其性能的好坏对整个传输系统的质量有举足

轻重的作用.一个完整的光通信系统,除光纤、光源和光检测器外.还需要许多其它光器件.特别是无源器件。这些器件对光纤通信系统的构成、功能的扩展或性能的提高,都是不可缺少的。虽然对各种器件的特性有不同的要求.但是普遍要求插人损耗小、反射损耗大、工作范围宽、性能稳定、寿命长、体积小、价格便宜等,许多器件还要求便于集成。在光纤通信系统中.作为载波的光波频率比电波的频率高的多.而作为传输介质的光纤又比同轴电缆或波导管的损耗低得多.所以说光纤通信的容量要比微波通信大几十亿倍。

光纤由纤芯、包层与涂层三大部分组成。光纤按模式分为多模光纤和单模光纤,对于公用通信网的骨干网,包括市内骨干网、接入网的光纤线路,需要使用单模光纤;专用的局域网和其它短距离光纤线路使用多模光纤。光纤的工作波长有短波长和长波长,短波长是0.85μm,长波长则是1.31μm和1.55μm两种。光纤的损耗在1.31μm 为0.35dB/km,在1.55μm为0.20dB/km。波长1.31μm光纤的色散为零,而波长 1.55μm光纤有最低损耗却有不小的色散(Chromaticdispersion,简写dispersion),对长距离、高速率脉冲信号传输有限制。经重新设计的光纤,使零色散波长从1.31μm移位至1.55μm,这样的单模光纤就称为‘色散移位光纤’,简写DSF (dispersionshiftedfiber)。为了充分发展WDM/DWDM系统,应用波长1.55μm存在小量的色散恰恰足够抵消FWM(四波混频)的影响,称为‘非零色散光纤’,简写NZDF (non-zerodispersionfiber)。

相关文档
最新文档