最新分子生物学基本含义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学基本含义

分子生物学

分子生物学的基本含义(p8)

分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系

分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切:

生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:

传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论

1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞学说

细胞学说的建立及其意义

德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

经典遗传学

两条基本规律:

统一律:当两种不同植物杂交时,它们的下一代可能与亲本之一完全相同;

分离规律:将不同植物品种杂交后的F1代种子再进行杂交或自交时,下一代就会按照一定的比例分离,因而具有不同的形式。

1865年发表《植物杂交试验》,直到1900年才被人们重新发现。孟德尔被公认为经典遗传学的奠基人。

现代遗传学

Morgan及其助手第一次将代表某一特性的基因同染色体联系起来,使科学界普遍认识了染色体的重要性并接受了孟德尔的遗传学原理。

Morgan特别指出:种质必须由某些独立的要素组成,我们把这些要素称为遗传因子或基因。

第二节分子生物学发展简史

准备和酝酿阶段(19世纪后期到20世纪50年代初)

对生命本质的认识上的两点重大突破:

1.确定了蛋白质是生命的主要基础物质

2.确定了生物遗传的物质基础是DNA

现代分子生物学的建立和发展阶段(20世纪50年代初到70年代初)

这一阶段以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。在此期间的主要进展包括:

遗传信息传递中心法则的建立

对蛋白质结构与功能的进一步认识

DNA双螺旋发现的意义:

确立了核酸作为信息分子的结构基础;

提出了碱基配对是核酸复制、遗传信息传递的基本方式;

从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。

Crick于1954年所提出遗传信息传递的中心法则(Central Dogma ):

初步认识生命本质并开始改造生命的深入发展阶段(20世纪70年代后至今)

基因工程技术的出现作为标志。其间的重大成就包括:

重组DNA技术的建立和发展

基因组研究的发展

单克隆抗体及基因工程抗体的建立和发展

基因表达调控机理

细胞信号转导机理研究成为新的前沿领域

第三节分子生物学的主要研究内容

一.DNA重组技术(recombinant DNA technology)

定义:又称为基因工程,根据分子生物学和遗传学的原理,将一种生物的遗传物质DNA转移到另一生物体中,使后者获得新的遗传性状或表达出所需要的产物。

DNA重组技术的应用:

利用微生物基因工程生产重组基因工程药物

转基因植物和动物体细胞克隆

基因表达与调控的基础研究

二.生物大分子的结构功能研究

三.基因组、功能基因组与生物信息学的研究

基因组、蛋白质组与生物信息学

基因组(Genome):细胞或生物体一条完整单体的全部染色体遗传物质的总和。

人类基因组计划(Human Genome Project, HGP):测定出人基因组全部DNA3109硷基对的序列、确定人类约5-10万个基因的一级结构。

基因组、蛋白质组与生物信息学

蛋白组计划(Proteome project):又称为后基因组计划或功能基因组计划,用于揭示并阐明细胞、组织乃至整个生物个体全部蛋白质及其功能。

生物信息学(Bioinformatics):是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。

四.基因表达调控研究

第二章染色体与DNA

本章内容

1.染色体

2. DNA的结构

3. DNA的复制

4.原核生物和真核生物DNA复制特点

5. DNA的修复

6. DNA的转座

第一节染色体(chromosome)

概念:

染色体(chromosome):原指真核生物细胞分裂中期具有一定形态特征的染色质。现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。

染色质(chromatin):由DNA和蛋白质构成,在分裂间期染色体结构疏松,称为染色质。其实染色质与染色体只是同一物质在不同细胞周期的表现。

相关文档
最新文档