离合器的设计计算及说明

离合器的设计计算及说明
离合器的设计计算及说明

第3章 离合器的设计计算及说明

3.1 离合器设计所需数据

表3.1 离合器原始数据

汽车的驱动形式

4×2 汽车最大加载质量 2000 kg 汽车的质量

4325 kg 发动机位置 前置

发动机最大功率 75KW 发动机最大转速

4500r/min 发动机最大扭矩

≥170N.m 离合器形式 机械、干式、单片、膜片弹簧(压式)

操纵形式 液压人力操纵

摩擦片最大外径

f=225mm 踏板行程

150~80mm i 0=6.17 i g1=5.913 i g2=2.659 i g3=1.775 i g4=1.000 汽车最大时速

≥110 km/h

3.2 摩擦片主要参数的选择

采用单片摩擦离合器是利用摩擦来传递发动机扭矩的,为保证可靠度,离合器静摩擦力矩c T 应大于发动机最大扭矩max e T

摩擦片的静压力:

max e C T T ?=β

(3.1)

式中:β离合器后备系数(1>β)

发动机的最大扭矩可由式: p

e e n P T max

max 9549

α= (3.2)求得

式中: 75max =e P Kw,4500=p n r/min 。α在 1.1~1.3之间 ,取α=1.16,则

196max =e T N.m

(1)后备系数β是离合器的重要参数,反映离合器传递发动机最大扭矩的可靠程度,选择β时,应从以下几个方面考虑:a. 摩擦片在使用中有一定磨损后,离合器还能确保传递发动机最大扭矩;b. 防止离合器本身滑磨程度过大;c. 要求能够防止传动系过载。通常轿车和轻型货车β=1.2~1.75。结合设计实际情况,故选择β=1.5。

则有β可有表3.2查得 β=1.5。

表3.2 离合器后备系数的取值范围

车型

后备系数β 乘用车及最大总质量小于6t 的商用车 1.20~1.75 最大总质量为6~14t 的商用车

1.50~

2.25 挂车

1.80~4.00

摩擦片的外径可有式:max e D T K D = (3.3) 求得

D K 为直径系数,取值见表3.3 取16=D K 得D=221.11mm 。

表3.3 直径系数的取值范围

车型

直径系数D K 乘用车

14.6

最大总质量为1.8~14.0t 的商用车 16.0~18.5(单片离合器) 13.5~15.0(双片离合器)

最大总质量大于14.0t 的商用车

22.5~24.0

摩擦片的尺寸已系列化和标准化,标准如下表(部分):

表3.4 离合器摩擦片尺寸系列和参数

外径D\mm 160 180 200 225 250 280 300 325 内径d\mm 110 125 140 150 155 165 175 190 厚度/mm

3.2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3'1C -

0.687 0.694 0.700 0.667 0.620 0.589 0.583 0.585 D d C ='

0.676 0.667 0.657 0.703 0.762 0.796 0.802 0.800 单面面积cm 2

106

132

160

221

302

402

466

546

摩擦片的摩擦因数f 取决于摩擦片所用的材料及基工作温度、单位压力和滑磨速度等因素。可由表3.5查得:

摩擦面数Z 为离合器从动盘数的两倍,决定于离合器所需传递转矩的大小及其结构尺寸。本题目设计单片离合器,因此Z=2。离合器间隙Δt 是指离合器处于正常接合状态、分离套筒被回位弹簧拉到后极限位置时,为保证摩擦片正常磨损过程中离合

器仍能完全接合,在分离轴承和分离杠杆内端之间留有的间隙。该间隙Δt 一般为3~4mm 。取Δt=4mm 。

表3.5 摩擦材料的摩擦因数的取值范围

摩擦材料

摩擦因数f 石棉基材料 模压 0.20~0.25 编织 0.25~0.35 粉末冶金材料

铜基 0.25~0.35 铁基

0.30~0.50

金属陶瓷材料

0.4

离合器的静摩擦力矩为:

c c fFZR T =

(3.4)

与式(3.1)联立得:

()

3

'3m a x 112C fzD T e -πβ

(3.5) 代入数据得:单位压力23.00=p MPa 。

表3.6 摩擦片单位压力的取值范围

摩擦片材料

单位压力0p /MPa

石棉基材料

模压 0.15~0.25 编织

0.25~0.35 粉末冶金材料

模压 0.35~0.50

编织

金属陶瓷材料

0.70~1.50 3.3 摩擦片基本参数的优化

(1)摩擦片外径D (mm )的选取应使最大圆周速度0v 不超过65~70m/s ,即

01

.531022560

1060

33max =??=

?=

--π

π

D n v e D m/s 70~65≤m/s

(3.6)

式中,0v 为摩擦片最大圆周速度(m/s );max e n 为发动机最高转速(r/min)。 (2)摩擦片的内、外径比'C 应在0.53~0.70范围内,即

7.067.053.0'≤=≤C

(3)为了保证离合器可靠地传递发动机的转矩,并防止传动系过载,不同车型的β值应在一定范围内,最大范围为1.2~4.0。

(4)为了保证扭转减振器的安装,摩擦片内径d 必须大于减振器振器弹簧

位置直径02R 约50mm ,即

5020+>R d mm

(5)为反映离合器传递的转矩并保护过载的能力,单位摩擦面积传递的转矩应小于其许用值,即

()

[]02

20212.04c c

c T d

D Z T T ≤=-=

π

(3.7)式中,0c T 为单位摩擦面积传递的转矩(N.m/mm 2),可按表3.6选取 经检查,合格。

表3.7 单位摩擦面积传递转矩的许用值

离合器规格

210≤ 250~210> 325~250>

325>

[]2010/-?c T

0.28

0.30

0.35

0.40

(6)为降低离合器滑磨时的热负荷,防止摩擦片损伤,对于不同车型,单位压力0p 的最大范围为0.11~1.50MPa ,即

10.0MPa 23.00=≤p MPa 50.1≤MPa

(7)为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过高而发生烧伤,离合器每一次接合的单位摩擦面积滑磨功应小于其许用值,即

()

[]ωπω≤-=

2

24d D Z W

(3.8)

式中,ω为单位摩擦面积滑磨(J/mm 2);[]ω为其许用值(J/mm 2),对于乘用车:

40.0][=ωJ/mm 2,对于最大总质量小于6.0t 的商用车:33.0][=ωJ/mm 2,对于

最大总质量大于6.0t 商用车:25.0][=ωJ/mm 2:W 为汽车起步时离合器接合一次所产生的总滑磨功(J ),可根据下式计算

???

? ??=

2202221800g r a e i i r m n W π

(3.9)

式中,a m 为汽车总质量(Kg);r r 为轮胎滚动半径(m );g i 为汽车起步时所用变

速器挡位的传动比;0i 为主减速器传动比;e n 为发动机转速r/min ,计算时乘用车取2000r/min ,商用车取1500r/min 。其中:17.60=i 913.51=g i 6.0=r r m

4325=a m Kg 代入式(3.9)得527.14431=W J ,代入式(3.8)得

][33.0327.0ωω=≤=,合格。

(8)离合器接合的温升

mc

W

t γ=

式中,t 为压盘温升,不超过10~8°C ;c 为压盘的比热容,4.481=c J/(Kg·°C);γ为传到压盘的热量所占的比例,对单片离合器压盘;5.0=λ,m 为压盘的质量15.3=m Kg

代入,76.4=t °C ,合格。

3.4 膜片弹簧主要参数的选择

1. 比较H/h 的选择

此值对膜片弹簧的弹性特性影响极大,分析式(3.10)中载荷与变形1之间的函数关系可知,当2h H 时,F 1有一极大值和极小值;当2=h H 时,F 1极小值在横坐标上,见图3.1。

1-2/<

h H 2-2/=h H 3-22/2<

4-22/=h H 5-22/>h H 图3.1 膜片弹簧的弹性特性曲线

为保证离合器压紧力变化不大和操纵方便,汽车离合器用膜片弹簧的H/h 通常在1.5~2范围内选取。常用的膜片弹簧板厚为2~4mm ,本设计2=h H ,

h=3mm ,则H=6mm 。

2. R/r 选择

通过分析表明,R/r 越小,应力越高,弹簧越硬,弹性曲线受直径误差影响越大。汽车离合器膜片弹簧根据结构布置和压紧力的要求,R/r 常在1.2~1.3 的

范围内取值。本设计中取25.1=r R ,摩擦片的平均半径75.934

=+=d

D R c mm ,c

R r > 取

94

=r mm 则

5

.117=R mm 取整

118

=R mm 则255.1=r R 。

3.圆锥底角

汽车膜片弹簧在自由状态时,圆锥底角α一般在15~9°范围内,本设计中

())r R H r R H -≈-=arctan α 得

32.14=α°在15~9°之间,合格。分

离指数常取为18,大尺寸膜片弹簧有取24的,对于小尺寸膜片弹簧,也有取12

的,本设计所取分离指数为18。 4.切槽宽度

5.3~2.31=δmm ,10~92=δmm ,取

31=δmm ,102=δmm ,e

r

应满足2δ≥-e r r 的要求。

5. 压盘加载点半径1R 和支承环加载点半径1r 的确定

1r 应略大于且尽量接近r ,1R 应略小于R 且尽量接近R 。本设计取

1161=R mm ,961=r mm 。膜片弹簧应用优质高精度钢板制成,

其碟簧部分的尺寸精度要高。国内常用的碟簧材料的为60SizMnA ,当量应力可取为1600~1700N/mm 2。 6. 公差与精度

离合器盖的膜片弹簧支承处,要具有大的刚度和高的尺寸精度,压力盘高度(从承压点到摩擦面的距离)公差要小,支承环和支承铆钉安装尺寸精度要高,耐磨性要好。

3.5 膜片弹簧的优化设计

(1)为了满足离合器使用性能的要求,弹簧的h H 与初始锥角()r R H -=α应在一定范围内,即

2.226.1≤=≤h H ()1532.149≤=-≈≤r R H α

(2)弹簧各部分有关尺寸的比值应符合一定的范围,即

35.1255.120.1≤=≤r R 10067.78270≤=≤h R

(3)为了使摩擦片上的压紧力分布比较均匀,推式膜片弹簧的压盘加载点半径1R (或拉式膜片弹簧的压盘加载点半径1r )应位于摩擦片的平均半径与外半径之间,即

推式: 24/)(1D R d D ≤≤+

拉式: 5.1122/9475.934/)(1=≤=≤=+D r d D (4)根据弹簧结构布置要求,1R 与R ,f r 与0r 之差应在一定范围内选取,即

6211≤=-≤R R 6201≤=-≤r r

400≤-≤r r f

(5)膜片弹簧的分离指起分离杠杆的作用,,因此杠杆比应在一定范围内选取,即

推式: 5.43.21

11≤--≤

r R r r f

拉式: 0.95.31

11≤--≤r R r R f

由(4)和(5)得34=f r mm ,320

=r mm 。

3.6膜片弹簧的载荷与变形关系

碟形弹簧的形状如以锥型垫片,见图3.2,它具有独特的弹性特征,广泛应用于机械制造业中。膜片弹簧是具有特殊结构的碟形弹簧,在碟簧的小端伸出许多由径向槽隔开的挂状部分——分离指。膜片弹簧的弹性特性与尺寸如其碟簧部分的碟形弹簧完全相同(当加载点相同时)。因此,碟形弹簧有关设计公式对膜片弹簧也适用。通过支承环和压盘加在膜片弹簧上的沿圆周分布的载荷,假象集中在支承点处,用F 1表示,加载点间的相对变形(轴向)为λ1,则压紧力F 1与变形λ1之间的关系式为:

()

()()??

????+???? ??--?λ-????? ??--λ--?

μ-λπ=

21111112

11211h r R r R 2H r R r R H r R r /R In 16Eh F (3.10)

式中: E ——弹性模量,对于钢,a MP E 5101.2?=

μ——泊松比,对于钢,μ=0.3

H ——膜片弹簧在自由状态时,其碟簧部分的内锥高度 h ——弹簧钢板厚度

R ——弹簧自由状态时碟簧部分的大端半径 r ——弹簧自由状态时碟簧部分的小端半径 R 1——压盘加载点半径 r 1——支承环加载点半径

图3.2 膜片弹簧的尺寸简图

表3.8 膜片弹簧弹性特性所用到的系数

R r R 1 r 1 H h 118

94

116

96

6

3

代入(3.10)得

()12

1311115.927356.222537.148λλλλ+-==f F

(3.11)

对(3.11)式求一次导数,可解出λ1=F 1的凹凸点,求二次导数可得拐点。

凸点:96.21=λmm 时,93.117961=F N 凹点:04.71=λmm 时,98.67481=F N 拐点:51=λmm 时,92731=F N

2、当离合器分离时,膜片弹簧加载点发生变化。设分离轴承对膜片弹簧指所加的载荷为F 2,对应此载荷作用点的变形为λ2。由

1111

1232.0F F r r r R F f

=?--=

(3.12)

11

1121.3λλ=--=

r R r r f

(3.13)

列出表3.8:

表3.9 膜片弹簧工作点的数据

1λ 2.96 7.04 5 2λ

9.18 2.182 15.5 1F 11796.93 6748.98 9273 2F

3775.02

2159.67

2967.36

膜片弹簧工作点位置的选择。从膜片弹簧的弹性特性曲线图分析出,该曲线的拐点H 对应着膜片弹簧压平位置,而()2111N M H λλλ+=。新离合器在接合状态时,膜片弹簧工作点B 一般取在凸点M 和拐点H 之间,且靠近或在H 点处,一般

()H 1B 10.1~8.0λ=λ,以保证摩擦片在最大磨损限度Δλ范围内压紧力从F 1B 到F 1A 变化不大。当分离时,膜片弹簧工作点从B 变到C ,为最大限度地减小踏板力,

C 点应尽量靠近N 点。为了保证摩擦片磨损后仍能可靠的传递传矩,并考虑摩擦因数的下降,摩擦片磨损后弹簧工作压紧力A F 1应大于或等于新摩擦片时的压紧力B F 1,见图3.3。3.7膜片弹簧的应力计算

假定膜片弹簧在承载过程中其子午断面刚性地绕此断面上的某中性点O 转动(图3.4)。断面在O 点沿圆周方向的切向应变为零,故该点的切向应力为零,O 点以外的点均存在切向应变和切向应力。现选定坐标于子午断面,使坐标原点位于中性点O 。令X 轴平行于子午断面的上下边,其方向如上图所示,则断面上任意点的切向应力为:

()x e y 2/x 1E 2

t +φ

-φ-αφ?

μ-=

σ

(3.14)

图3.3 膜片弹簧工作点位置

式中 φ——碟簧部分子午断面的转角(从自由状态算起)

α——碟簧部分子有状态时的圆锥底角 e ——碟簧部分子午断面内中性点的半径

e=(R-r )/In(R/r)

(3.15)为了分析断面中断向应力的分布规律,将(3.14)式写成Y 与X 轴的关系式:

()()

φφα??μ--

???

?

????αμ--??? ??φ-α=E e 1X E 12Y t 2t 2t (3.16)

图3.4 切向应力在子午断面的分布

由上式可知,当膜片弹簧变形位置φ一定时,一定的切向应力αt 在X-Y 坐标系里呈线性分布。

当0t =α时X )2(Y ?-α=,因为)2(?-α的值很小,我们可以将)2

(?

α-看成

)2(tg ?-α,由上式可写成X )2

(tg Y ?

-α=。此式表明,对于一定的零应力分布在

中性点O 而与X 轴承)2(?

-α角的直线上。从式(3.16)可以看出当e X -=时无

论取任何值,都有e )2

(Y ?

-α-=。显然,零应力直线为K 点与O 点的连线,在

零应力直线内侧为压应力区,外侧位拉应力区,等应力直线离应力直线越远,其

应力越高。由此可知,碟簧部分内缘点B 处切向压应力最大,A 处切向拉应力最大,分析表明,B 点的切向应力最大,计算膜片弹簧的应力只需校核B 处应力

就可以了,将B 点的坐标X=(e-r )和Y=h/2 代入(3.17)式有:

()()}22

2{

122

??μσ????

???+---??-=

h d r e r e r

e

tB (3.17)

0d B d t =?

σ可以求出切向压应力达极大值的转角()r e 2h

P -+

α=? 由于: 55.105)

94/118ln(94

118)ln(=-=-=

r R r R e mm

所以: 38.0=P ?,-2047.39=tB σN/mm 2

B 点作为分离指根部的一点,在分离轴承推力F 2作用下还受有弯曲应力:

()2

r 2

f rB h b n F r r 6??-=

σ (3.18)

式中 n ——分离指数目 n=18 b r ——单个分离指的根部宽

17.1118

32

21820=??==

ππr b r mm 因此: 80.689=rB σN/mm 2

由于σrB 是与切向压应力σtB 垂直的拉应力,所以根据最大剪应力强度理论,B 点的当量应力为:

59.135739.204780.689-=-=-=tB rB Bj σσσN/mm 2

1700][=

膜片弹簧的设计应力一般都稍高于材料的局限,为提高膜片弹簧的承载能力,一般要经过以下工艺:先对其进行调质处理,得到具有较高抗疲劳能力的回火索氏体,对膜片弹簧进行强压处理(将弹簧压平并保持12~14h ),使其高应力区产生塑性变形以产生残余反向应力,对膜片弹簧的凹表面进行喷丸处理,提高弹簧疲劳寿命,对分离指进行局部高频淬火或镀铝,以提高其耐磨性。

故膜片弹簧和当量应力不超出允许应力范围,所以用设数据合适。

3.8 扭转减振器设计

减震器极转矩 2945.1max ==e j T T N·m 摩擦转矩 98.4917.0max ==e u T T N·m 预紧转矩 1.4415.0max ==e n T T N·m

极限转角 12~3=j ?° 扭转角刚度 382213=≤j T k ?N ·m/rad 详细见图3.5。

3.9 减振弹簧的设计

1.减振弹簧的安装位置

2)75.0~60.0(0d R =,

结合5020+>R d mm ,得0R 取49mm ,则6533.02

=d R 。 2.全部减振弹簧总的工作负荷Z P

60001==R T P j Z N

3.单个减振弹簧的工作负荷P

1000==Z P P Z N

式中Z 为减振弹簧的个数,按表3.9选择: 取Z=6

表3.10 减振弹簧个数的选取

摩擦片的外径D/mm

225~250 250~325 325~350 〉350 Z

4~6

6~8

8~10

〉10

图3.5 扭转减振器

4.减振弹簧尺寸

(1)选择材料,计算许用应力

根据《机械原理与设计》(机械工业出版社)采用65Mn 弹簧钢丝, 设弹簧丝

直径4=d mm,1620=b σMPa,[]8105.0==b στMPa 。

(2)选择旋绕比,计算曲度系数 根据下表选择旋绕比

表3.11 旋绕比的荐用范围

d/mm 4.0~2.0 1~45.0 2.2~1.1 6~5.2 16~7 42~18 C

14~7

12~5

10~5

9~4

8~4

6~4

确定旋绕比4=C ,曲度系数40.1615.0)44()14(=+--=C C C K (3)强度计算

[]

482==

τπC

KF d j mm ,与原来的d 接近,合格。

中径 162==Cd D mm ;外径 202=+=d D D mm

(4)极限转角12~32arcsin 20

=?=R l

j ?°取 823.3=j ?°,则269.3=?l mm

(5)刚度计算

弹簧刚度 95.152)(21=?-=l F F k mm 其中,2F 为最小工作力,125.0F F =

弹簧的切变模量80000=G MPa ,则弹簧的工作圈数

086.4883

31==?=

k

C Gd

C F d G n l 取4=n ,总圈数为61=n

(6)弹簧的最小高度

16min ==dn l mm

(7)减振弹簧的总变形量

538.6'==?k P l mm

(8)减振弹簧的自由高度

538.22'min 0=?+=l l l mm

(9)减振弹簧预紧变形量

538.00

1==

kZR T l μmm

(10)减振弹簧的安装高度

2210=-=l l l mm

(11)定位铆钉的安装位置

取522=R mm ,则859364477.3=j ?°,30.3=?l mm ,52.151=k mm ,

12.4=n ,合格。

3.10 操纵机构

汽车离合器操纵机构是驾驶员用来控制离合器分离又使之柔和接合的一套机构。它始于离合器踏板,终止于离合器壳内的分离轴承。由于离合器使用频繁,因此离合器操纵机构首先要求操作轻便。轻便性包括两个方面,一是加在离合器踏板上的力不应过大,另一方面是应有踏板形成的校正机构。离合器操纵机构按分离时所需的能源不同可分为机械式、液压式、弹簧助力式、气压助力机械式、气压助力液压式等等。

离合器操纵机构应满足的要求是[3]:

(1)踏板力要小,轿车一般在80~150N 范围内,货车不大于150~200N ; (2)踏板行程对轿车一般在150~80mm 范围内,对货车最大不超过180mm ; (3)踏板行程应能调整,以保证摩擦片磨损后分离轴承的自由行程可复原; (4)应有对踏板行程进行限位的装置,以防止操纵机构因受力过大而损坏; (5)应具有足够的刚度; (6)传动效率要高;

(7)发动机振动及车架和驾驶室的变形不会影响其正常工作。

机械式操纵机构有杠系传动和绳索系两种传动形式,杠传动结构简单,工作可靠,但是机械效率低,质量大,车架和驾驶室的形变可影响其正常工作,远距离操纵杆系,布置困难,而绳索传动可消除上述缺点,但寿命短,机构效率不高。

本次设计的普通轮型离合器操纵机构,采用液压式操纵机构。液压操纵机构有如下优点:

(1)液压式操纵,机构传动效率高,质量小,布置方便;便于采用吊挂踏板,从而容易密封,不会因驾驶室和车架的变形及发动机的振动而产生运动干涉; (2)可使离合器接合柔和,可以降低因猛踩踏板而在传动系产生的动载荷,正由于液压式操纵有以上的优点,故应用日益广泛,离合器液压操纵机构由主缸、

工作缸、管路系统等部分组成。

1202=a mm ,501=a mm ,1352=d mm ,671=d mm 502=c mm ,4.211=c mm ,501=b mm ,952=b mm

3.10.1 离合器踏板行程计算

踏板行程S 由自由行程1S 和工作行程2S 组成:

21112

22212021d b a d b a c c S Z S S S S f ???? ?

??+=+=

(3.19)

式中,f S 0为分离轴承的自由行程,一般为0.3~5.1mm ,取5.10=f S mm ;反映到踏板上的自由行程1S 一般为30~20mm ;1d 、2d 分别为主缸和工作缸的直径;Z 为摩擦片面数;S ?为离合器分离时对偶摩擦面间的间隙,单片:

30.1~85.0=?S mm ,取2.1=?S mm ;1a 、2a 、1b 、2b 、1c 、2c 为杠杆尺寸。

得:131=S mm ,77.271=S mm ,合格。

图3.6 液压操纵机构示意图

3.10.2踏板力的计算

踏板力为

s f F i F F +=∑η

'

(3.20)

式中,'F 为离合器分离时,压紧弹簧对压盘的总压力;∑i 为操纵机构总传

动比,2

1

1112

2

222d c b a d c b a i =∑;η为机械效率,液压式:90~80=η%,机械式:80~70=η%;s F 为克服回位弹簧1、2的拉力所需的踏板力,在初步设计时,

可忽略之。30.3467

'=F N ,26.43=∑i ,80=η%;则 19.100=f F N

合格。

分离离合器所作的功为

S Z F F W L ?+=

)(5

.0'1η

式中,1F 为离合器拉接合状态下压紧弹簧的总压紧力,32.108351=F N ,则

45.21=L W J

合格。

3.11从动轴的计算

1.选材

40Cr 调质钢可用于载荷较大而无很大冲击的重要轴,初选40Cr 调质 。 2.确定轴的直径

3n P A d ≥

式中,A 为由材料与受载情况决定的系数,见表3.11:

表3.12 轴常用几种材料的[]τ及A 值

轴的材料

Q235-A ,20

Q275,35 (1Cr18Ni9Ti )

45

40Cr,35SiMn 38SiMnMo,3Cr13

[]a MP /τ

15~25 20~35 25~45 35~56 A

149~126

135~112

126~103

112~97

取100=A ,n 为轴的转速,4500=n r/min ,则

54.25=d mm ,取36=d mm 。

3.12 从动盘毂

从动盘毂是离合器中承受载荷最大的零件,它几乎承受由发动机传来的全部转矩。它一般采用齿侧对中的矩形花键安装在变速器的第一轴上,花键的尺寸可根据摩擦片的外径D 与发动机的最大转矩max e T 由表3.12选取:

一般取1.0~1.4倍的花键轴直径。从动盘毂一般采用碳钢,并经调质处理,表面和心部硬度一般26~32HRC 。为提高花键内孔表面硬度和耐磨性,可采用镀铬工艺;对减振弹簧窗口及与从动片配合处,应进行高频处理。取10=n ,

35'=D mm ,28'=d mm ,4=t mm ,35=l mm ,2.10=c σMPa 。

验证:挤压应力的计算公式为:nlt

R

c =

σ 式中,P 为花键的齿侧面压力,它由下式确定:

Z

d D T P

e )(4'

'max

+=

从动盘毂轴向长度不宜过小,以免在花键轴上滑动时产生偏斜而使分离不彻

底,

'D ,'d 分别为花键的内外径;

Z 为从动盘毂的数目;取Z=1 h 为花键齿工作高度;2/)(''d D h -=

得44.12=P N ,16.10=c σMPa 2.10≤MPa ,合格。

表3.13 花健的的选取

摩擦片的外径

D /mm

max e T /N.m

花健尺寸

挤压应力

c σ/MPa

齿数 n 外径

'

D /mm

内径

'

d /mm

齿厚

t /mm

有效齿

l /mm

160 49 10 23 18 3 20 9.8 180 69 10 26 21 3 20 11.6 200 108 10 29 23 4 25 11.1 225

147

10

32

26

4

30

11.3

250 196 10 35 28 4 35 10.2 280 275 10 35 32 4 40 12.5 300 304 10 40 32 5 40 10.5 325 373 10 40 32 5 45 11.4 350

471

10

40

32

5

50

13.0

3.13 分离轴承的寿命计算

分离轴承的参数

表3.14 分离轴承参数表

型号 Cr p f

ε n 7014C

48.2KN

1.2

3

4500r/min

则由下式:

)(60106P

C n L h =

r p F f P =

得:

49113=h L h

汽车离合器课程设计说明书

1 《汽车设计》课程设计 题目:汽车离合器设计 专业:交Y 班级:091 学号:200900207XXX 姓名:XXX 指导老师:韦志林 完成日期: 成绩:

1 目录 任务与背景分析 (4) 1离合器主要参数选择 (5) 1.1 初选摩擦片外径D、内径d、厚度b (5) 1.2 后备系数β (5) P (6) 1.3 单位压力 1.4 摩擦因数f、离合器间隙Δt (6) 2 离合器基本参数的优化 (6) 2.1 设计变量 (6) 2.2 目标函数 (7) 2.3 约束条件 (7) 3摩擦片尺寸校核与材料选择。 (7) 4膜片弹簧的设计 (8) 5.扭转减振器的设计 (11) 6减振弹簧的计算 (12) 6.1减振弹簧的分布半径R0 (12) 6.2单个减振器的工作压力P (12) 6.4减振弹簧刚度k (13) 6.5减振弹簧有效圈数 (13) 6.6减振弹簧总圈数n (13) l (14) 6.7减振弹簧最小高度min 6.8全部减震弹簧总的工作负荷 (14) 6.9单个减震弹簧的工作负荷P (14) 6.9.1减震弹簧总变形量 (14) 6.9.2减震弹簧自由高度 (14) 6.9.3减震弹簧预变形量 (14) 6.9.4减震弹簧安装高度 (14) 6.9.5从动片相对从动毂的最大转角 (14) 7.1从动盘毂 (15) 7.2从动片 (15) 7.3波形片和减振弹簧 (15) 8压盘设计 (15) 8.1离合器盖 (15) 8.2压盘 (16) 8.2.3分离轴承 (16) 9.总结 (17) 10参考文献 (17)

1 前言 对于内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,按动力传递顺序来说,离合器应是传动系中的第一个总成。目前,目前汽车上广泛采用弹簧压紧的摩擦式离合器,摩擦离合器是一种依靠主、从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构和操作机构等四部分。 离合器是设置在发动机与变速器之间的动力传递机构,其主要功用是:切断和实现发动机对传动系的动力传递,保证汽车起步时将发动机与传动系统平顺地结合,确保汽车平稳起步;在换挡时将发动机与传动系统分离,减少变速器中换挡齿轮之间的冲击;在工作中受到较大的动载荷时,能限制传动系统所承受的最大转矩,以防止传动系各零部件因过载而损坏;有效地降低传动系中的振动和噪声。 随着汽车发动机转速、功率的不断提高和汽车电子技术的高速发展,人们对离合器的要求越来越高。从提高离合器工作性能的角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。 设计的目的和意义:本次设计,我力争把离合器设计系统化,让离合器在任何行驶条件下,既能可靠的传递发动机的最大转矩,并有适当的转矩储备,又能防止过载。结合时要完全、平顺、柔和,保证起初起步时没有抖动和冲击。分离是要迅速、彻底。从动部分转动惯量要小,以减轻换挡时变速器齿轮间的冲击,便于换档和减小同步器的磨损。应有猪狗的吸热能力和良好的通风效果,以保证工作温度不致过高,延长寿命。操纵方便、准确,以减少驾驶员的疲劳。具有足够的强度和良好的动平衡,以保证其工作可靠、使用寿命长。为离合器设计者提供一定的参考价值

离合器毕业设计

第1章绪论 1.1选题的目的 本次设计,我力争把离合器设计系统化,为离合器设计者提供一定的参考价值。抛弃传统的推式膜片弹簧离合器,设计新式的拉式膜片弹簧离合器是本次设计的主要特点。 1.2离合器发展历史 近年来各国政府都从资金、技术方面大力发展汽车工业,使其发展速度明显比其它工业要快的多,因此汽车工业迅速成为一个国家工业发展水平的标志。 对于内燃机汽车来说,离合器在机械传动系中作为一个独立的总成而存在,它是汽车传动系中直接与发动机相连接听总成。目前,各种汽车广泛采用的摩擦式离合器主要依靠主、从动部分之间的摩擦来传递动力且能分离的装置。 在早期研发的离合器中,锥形离合器最为成功。现今所用的盘片式离合器的先驱是多片盘式离合器,它是直到1925年以后才出现的。20世纪20年代末,直到进入30年代时,只有工程车辆、赛车和大功率的轿车上才采用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向于首选单片干式离合器[1]。 近来,人们对离合器的要求越来越高,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。 随着汽车发动机转速、功率不断提高和汽车电子技术的高速发展,人们对离合器的要求越来越高。从提高离合器工作性能的角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。随着计算机的发展,设计工作已从手工转向电脑,包括计算、性能演示、计算机绘图、制成后的故障统计等等。 1.3离合器概述 按动力传递顺序来说,离合器应是传动系中的第一个总成。顾名思义,离合器是“离”与“合”矛盾的统一体。离合器的工作,就是受驾驶员操纵,或者分离,或者接合,以完成其本身的任务。离合器是设置在发动机与变速器之间的动力传递机构,其功用是能够在必要

离合器课程设计说明书

沈阳工学院 课程设计 9离合器设计 魏明厚 专业名称:车辆工程 课程名称:汽车设计 指导教师:孙飞豹 完成日期: 2016年6月15日 2014年6月 摘要

对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主、从动部分之间的大摩擦来传递动力且能分离的装置。离合器主要功用是切断和实现对传动系的动力传递,保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换挡齿轮之间的冲击;在工作中受到大的动载荷时,能限制传动系所承受的最大转矩,防止传动系各零件因过载而损坏;有效地降低传动系中的振动和噪声。 本文通过对轿车整车参数的分析,并在拆装轿车膜片弹簧离合器及对其进行结构分析的基础上,对轿车离合器进行重新设计,使得轿车离合器设计更合理。首先对轿车离合器的结构型式进行合理选择,主要是对从动盘数及干湿式的选择、压紧弹簧的结构型式及布置和从动盘的结构型式选择,并利用CAXA电子图板软件绘制轿车膜片弹簧离合器装配图;再进行离合器的基本结构尺寸和参数的选择及计算;最后进行离合器零件的结构选型及设计计算,主要是对从动盘总成设计,压盘、传力片的设计校核,膜片弹簧主要参数的选择、设计和强度校核,并绘制离合器零件图。 关键词:轿车离合器膜片弹簧设计校核

目录 第一章离合器方案的确定 (4) 1.1 车型分析 (4) 1.2 方案选择 (4) 第二章离合器基本参数的确定 (5) 2.1 后备系数 (6) 2.2 单位压力 (7) 2.3 摩擦片外径、内径和厚度 (7) 2.4 摩擦因数、摩擦面数和离合器间隙 (8) 第三章离合器零件的结构选型及设计计算 (9) 3.1 从动盘总成设计 (9) 3.1.1 从动盘总成的结构型式的选择 (9) 3.1.2 从动片结构型式的选择 (10) 3.2 离合器盖总成设计 (10) 3.2.1 离合器盖设计 (11) 3.2.2 压盘设计 (11) 3.3膜片弹簧的设计 (11) 3.3.1 膜片弹簧基本参数的选择 (11) 3.3.2 膜片弹簧材料及制造工艺 (14) 3.4 扭转减振器 (14) 3.4.1 扭转减振器的功用 (15) 3.4.2 扭转减振器组成 (15) 3.4.3 减振器的结构设计 (15) 3.4.4从动盘毂的设计校核 (17) 参考文献 (18) 致谢 (19)

汽车离合器设计说明书 毕业设计

1、离合器概述 对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构、和操纵机构等四部分。 离合器的功用主要的功用是切断和实现发动机对传动系的动力传递,保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换档时将发动机与传动系分离,减少变速器中换档齿轮之间的冲击;在工作中受到较大的动载荷时,能限制传动系所承受的最大转矩,以防止传动系各零件因过载而损坏;有效地降低传动系中的振动和噪声。 2、设计要求及其技术参数 基本要求: 1)在任何行驶条件下,既能可靠地传递发动机的最大转矩,并有适当的转矩储备,又能防止过载。 2)接合时要完全、平顺、柔和,保证起初起步时没有抖动和冲击。 3)分离时要迅速、彻底。 4)从动部分转动惯量要小,以减轻换档时变速器齿轮间的冲击,便于换档和减小同步器的磨损。 5)应有足够的吸热能力和良好的通风效果,以保证工作温度不致过高,延长寿命。 6)操纵方便、准确,以减少驾驶员的疲劳。 7)具有足够的强度和良好的动平衡,一保证其工作可靠、使用寿命长。 技术参数: 车型:华丽特锐2WD 整车质量(kg):1050 最大扭矩/转速(N·m/rpm):120/3200 主减速比:5.285 一档速比: 滚动半径:350mm 3、结构方案分析 3.1从动盘数的选择:单片离合器 单片离合器:对乘用车和最大质量小于6t的商用车而言,发动机的最大转矩

一般不大,在布置尺寸容许条件下,离合器通常只设有一片从动盘。 单片离合器的结构简单,轴向尺寸紧凑,散热良好,维修调整方便,从动部分转动惯量小,在使用时能保证分离彻底,采用轴向有弹性的从动盘可保证结合平顺。 3.2压紧弹簧和布置形式的选择:拉式膜片弹簧离合器 膜片弹簧是一种由弹簧钢制成的具有特殊结构的碟形弹簧,主要由碟簧部分和分离指部分组成。 1. 膜片弹簧离合器与其他形式的离合器相比,有如下优点: 1) 具有较理想的非线性弹性特性。 2) 兼起压紧弹簧和分离杠杆的作用。 3) 高速旋转时,弹簧压紧力降低很少,性能较稳定。 4) 以整个圆周与压盘接触,使压力分布均匀,摩擦片接触良好,磨损均匀。 5) 通风散热良好,使用寿命长。 6) 膜片弹簧中心与离合器中心线重合,平衡性好。 2. 与推式相比,拉式膜片弹簧离合器具有许多优点:取消了中间支承各零件,并不用支承环或只用一个支承环,使其结构更简单、紧凑,零件数目更少,质量更小等。 3.3膜片弹簧的支撑形式 图3-1为拉式膜片弹簧的支承形式—单支承环形式,将膜片弹簧大端支承在离合器盖杀中的支承环上。 图3-1

离合器设计说明书

工学院 课程设计 离合器设计 (设计题目) 1310111006俊男 (学生) 专业名称:车辆工程 课程名称:汽车设计 指导教师 (职称):飞豹(副教授) 完成日期: 2014 年6月25日 2014年6月

摘要 离合器是汽车传动系中直接与发动机相连接的总成,其主要功用是切断和实现对传动系的动力传递,保证汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换挡齿轮之间的冲击;在工作中受到大的动载荷时,能限制传动系所承受的最大转矩,防止传动系各零件因过载而损坏;有效地降低传动系中的振动和噪声。 本文通过对轿车整车参数的分析,并在拆装轿车膜片弹簧离合器及对其进行结构分析的基础上,对轿车离合器进行重新设计,使得轿车离合器设计更合理。首先对轿车离合器的结构型式进行合理选择,主要是对从动盘数及干湿式的选择、压紧弹簧的结构型式及布置和从动盘的结构型式选择,并利用CAXA电子图板软件绘制轿车膜片弹簧离合器装配图;再进行离合器的基本结构尺寸和参数的选择及计算;最后进行离合器零件的结构选型及设计计算,主要是对从动盘总成设计,压盘、传力片的设计校核,膜片弹簧主要参数的选择、设计和强度校核,并绘制离合器零件图。 关键词:轿车离合器膜片弹簧设计校核

Abstract Clutch is the assembly which is directly connected with engine in the automobile power train. And its main function is to cut off or implement the power transmission in the power train. It ensured the engine and the power train perfectly smooth join together when the automobile starting up and insure the automobile smooth starting up. The clutch is disconnected the engine and the power train when the automobile stage changeover. It reduced the impact between the shift gears of the transmission. When the transmission worked by the great dynamic load, the clutch can limit the breakdown torque of the power train, to prevent the accessory of the power train damage due to overload. It effectively reduced the vibration and noise of the power train. In this paper, based on the analysis of the car parameters, on the basis of dismantle and install diaphragm spring clutch of sedans and its structural analysis to redesign the sedan clutch for it makes the design of the car clutch more reasonable. First, we should be choose the structure of the car clutch reasonable. It is mainly choose the structure of the driven disk that wet or dry, the structure of pinched spring and the layout. And I make use of CAXA electronic drawing board software draw the assembly drawing of the cars Diaphragm spring clutch. Than I make sure the choice and design calculation of the clutch structure size and the basic parameters. Finally, I carry on the structure type slection of clutch parts and the design calculation. It is mainly design and checking the driven disk assembly, platen and patch of force. And I make sure diaphragm spring main parameters of the selection, design, strength check and draw the clutch detail drawing. Keywords:Car clutch; Diaphragm spring; Design; Checking

离合器设计说明书

中华人民共和国教育部 X X X X X大学 课程设计说明书 设计题目:拉式膜片弹簧离合器设计学生: 指导教师: 学院: 专业:

拉式膜片弹簧离合器设计 摘要 离合器的主要功用是切断和实现发动机对传动系的动力传递,设计的离合器应在任何行驶条件下,都能可靠地传递发动机所在工况的最大转矩,有适当的转矩储备并且防止传动系过载。本设计在参考了多种离合器结构形式的基础上,具体设计了一个拉式膜片弹簧离合器。 关键词:拉式;膜片弹簧离合器;结构设计

目录 1 离合器主要参数的选择 (1) 2 离合器基本参数的优化 (1) 2.1 设计变量 (1) 2.2 目标函数 (1) 2.3 约束条件 (2) 3 膜片弹簧的设计 (3) 3.1 膜片弹簧的基本参数的选择 (3) 3.2 膜片弹簧的弹性特性曲线 (4) 3.3 强度校核 (4) 4 扭转减振器的设计 (4) 4.1 扭转减振器主要参数 (4) 4.2 减振弹簧的计算 (6) 5 从动盘总成的设计 (8) 5.1 从动盘毂 (8) 5.2 从动片 (8) 5.3 波形片和减振弹簧 (8) 6 压盘设计 (8) 6.1 离合器盖 (8) 6.2 压盘 (8) 6.3分离轴承 (8) 7 小结 (10) 参考文献 (11)

1 离合器主要参数的选择 1.1 初选摩擦片外径D 、内径d 、厚度b 根据《汽车离合器》(徐石安,江发潮编著,清华大学出版社出版)式3.2.1,有D =A T e max 100 ,对于小轿车 A=47,得D=100 32847 264.173= 根据《汽车离合器》(徐石安,江发潮编著,清华大学出版社出版)表3.2.1可知,取D=325mm ,d=172mm ,b=3.5mm 1.2 后备系数β 由于所设计的离合器为膜片弹簧离合器,在使用过程中其摩擦片的磨损工作压力几乎不会变小(开始时还有些增加),再加上小轿车的后备功率比较大,使用条件较好,宜取较小值,故取β=1.25。 1.3 单位压力0P 根据《汽车离合器》(徐石安,江发潮编著,清华大学出版社出版)3.2.3节可知,对于小轿车 当D ≥230mm 时,则0P =1.18/D Mpa ; 当D< 230mm 时,则0P =0.25Mpa ; 所以由于D =325mm,取0P =0.165Mpa ; 故根据《汽车设计》(王望予编著,机械工业出版社出版)表2-2,摩擦片材料选择石棉基材料。则取0P =0.2Mpa 1.4 摩擦因数f 、离合器间隙Δt 故根据《汽车设计》(王望予编著,机械工业出版社出版)表2-4摩擦因数f=0.3 离合器间隙Δt=3mm 选用单片从动片所以摩擦面数取 Z=2 2 离合器基本参数的优化 2.1 设计变量 后备系数β取决于离合器工作压力F 和离合器的主要尺寸参数D 和d 。单位压力P 也取决于离合器工作压力F 和离合器的主要尺寸参数D 和d 。因此,离合器基本参数的优化设计变量选为: T T FDd x x x X ] [] [321== 2.2 目标函数 离合器基本参数优化设计追求的目标,是在保证离合器性能要求的条件下使

(完整版)离合器计算与设计

离合器设计与计算 本次设计主要是对离合盖器总成中的膜片弹簧、压盘,从动盘总成中的从动片等主要零部件进行详细的计算与设计,其他零部件采用进行简略设计。 设计时已知参数如下: (1)发动机起步转矩; (2)整车质量; (3)车轮滚动半径; (4)发动机起步转速; (5)变速器起步档变速比; (6)主传动比。 3.1离合器设计基本结构尺寸及参数 在初步确定离合器结构形式后,要通过离合器的基本结构尺寸和参数具体确定离合器。 离合器设计时所需的基本结构尺寸、参数主要有: (1)摩擦片外径D; (2)单位压力p; (3)后备系数β; 在选定以上参数时,以下车辆参数对其有重大影响: (1)发动机最大转矩; (2)整车总质量; (3)传动系总传动比(变速器传动比主减速器传动比); (4)、车轮滚动半径; 3.2 离合器基本参数选取和主要尺寸设计计算 3.2.1 离合器转矩容量的确定 离合器的基本结构是摩擦传动机构,离合器依靠摩擦表面间的摩擦力矩来传递转矩。所以可根据摩擦定律表示出离合器转矩容量公式:

(3.1) 式中:为离合器转矩容量; f为摩擦面间的静摩擦因数,一般取0.25—0.30; F为作用在摩擦面上的总压紧力,单位N; 为摩擦片的平均摩擦半径,单位m; Z为摩擦面数,单片为2,双片为3。 摩擦片上工作压力F一般在设计离合器时假设摩擦片上压力均匀分布: (3.2)式中:为摩擦面上均匀压力,单位N; A为摩擦面积,单位; D为摩擦片外径,单位m; d为摩擦片内径,单位m。 式(3.1)中有效作用半径公式如下: (3.3) 式中:D为摩擦片外径,单位m; d为摩擦片内径,单位m。 将式(3.2)与式(3.3)代人式(3.1)得: (3.4)式中:为摩擦片内、外径之比,一般在0.53~0.70之间。 为了保证离合器在任何工况下都能可靠地传递发动机的最大转矩,设计时应应大于发动机最大转矩,确定离合器转矩容量时应含有设计因子,即: (3.5) 式中:为发动机最大转矩,单位;

离合器设计说明书.

目录 一离合器结构设计 (2) 1.1离合器结构选择与论证 1.2离合器结构设计要点 1.3离合器主要零件的设计 二离合器的设计计算及说明 (7) 2.1离合器设计所需数据 2.2摩擦片主要参数选择 2.3摩擦片基本参数设计优化 2.4膜片弹簧主要参数的选择 2.5膜片弹簧的优化设计 2.6膜片弹簧的载荷与变形关系 2.7膜片弹簧的应力计算 2.8扭转减震器设计 2.9减震弹簧的设计 2.10踏板行程及踏板力计算 2.11从动轴的计算 2.12从动盘毂 2.13分离轴承的寿命计算 三心得体会 (25) 四参考文献 (26)

一离合器的结构设计 为了达到计划书所给的数据要求,设计时应根据车型的类别、使用要求、制造条件,以及“系列化、通用化、标准化”的要求等,合理选择离合器结构。 1.1 离合器结构选择与论证 1.1.1 摩擦片的选择 单片离合器因为结构简单,尺寸紧凑,散热良好,维修调整方便,从动部分转动惯量小,在使用时能保证分离彻底接合平顺,所以被广泛使用于轿车和中、小型货车,因此该设计选择单片离合器。摩擦片数为2。 1.1.2 压紧弹簧布置形式的选择 离合器压紧装置可分为周布弹簧式、中央弹簧式、斜置弹簧式、膜片弹簧式等。其中膜片弹簧的主要特点是用一个膜片弹簧代替螺旋弹簧和分离杠杆。膜片弹簧与其他几类相比又有以下几个优点[9]: (1)由于膜片弹簧有理想的非线性特征,弹簧压力在摩擦片磨损范围内能保证大致不变,从而使离合器在使用中能保持其传递转矩的能力不变。当离合器分离时,弹簧压力不像圆柱弹簧那样升高,而是降低,从而降低踏板力; (2)膜片弹簧兼起压紧弹簧和分离杠杆的作用,使结构简单紧凑,轴向尺寸小,零件数目少,质量小; (3)高速旋转时,压紧力降低很少,性能较稳定;而圆柱弹簧压紧力明显下降; (4)由于膜片弹簧大断面环形与压盘接触,故其压力分布均匀,摩擦片磨损均匀,可提高使用寿命; (5)易于实现良好的通风散热,使用寿命长; (6)平衡性好; (7)有利于大批量生产,降低制造成本。 但膜片弹簧的制造工艺较复杂,对材料质量和尺寸精度要求高,其非线性特性在生产中不易控制,开口处容易产生裂纹,端部容易磨损。近年来,由于材料性能的提高,制造工艺和设计方法的逐步完善,膜片弹簧的制造已日趋成熟。因此,我选用膜片弹簧式离合器。 1.1.3 压盘的驱动方式

轻型货车离合器设计说明书

汽车设计 第二章离合器设计 设计参数 车型:轻型货车 整车质量(Kg):3830 发动机最大扭矩/转速(N·m/rpm):220/2100 最大功率/转速(Kw/rpm):67/3000 车轮滚动半径:(mm):340 一、离合器的设计目的及原理概述 1.1离合器的设计目的 了解轿车离合器的构造,掌握轿车离合器的工作原理。了解从动盘总成的结构,掌握从动盘总成的设计方法,了解压盘和膜片弹簧的结构,掌握压盘和膜片弹簧的设计方法,通过对以上几方面的了解,从而熟悉轿车离合器的工作原理。 学会如何查找文献资料、相关书籍,培养自己的动手设计项目、自学的能力,掌握单独设计课题和项目的方法,设计出满足整车要求并符合相关标准、具有良好的制造工艺性且结构简单、便于维护的轿车离合器,为以后从事汽车方面的工作或工作中设计其它项目奠定良好的基础。 1.2离合器的工作原理 离合器通常装在发动机与变速器之间,其主动部分与发动机飞轮相连,从动部分与变速器相连。为各类型汽车所广泛采用的摩擦离合器,实际上是一种依靠

其主、从动部分间的摩擦来传递动力且能分离的机构。 离合器的主要功用是切断和实现发动机与传动系平顺的接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换档齿轮间的冲击;在工作中受到较大的动载荷时,能限制传动系所承受的最大转矩,以防止传动系个零部件因过载而损坏;有效地降低传动系中的振动和噪音。 1.3离合器的设计要求 1)在任何行驶条件下,既能可靠地传递发动机的最大转矩,并有适当的转矩储 备,又能防止过载。 2)接合时要完全、平顺、柔和,保证起初起步时没有抖动和冲击。 3)分离时要迅速、彻底。 4)从动部分转动惯量要小,以减轻换档时变速器齿轮间的冲击,便于换档和减 小同步器的磨损。 5)应有足够的吸热能力和良好的通风效果,以保证工作温度不致过高,延长寿 命。 6)操纵方便、准确,以减少驾驶员的疲劳。 7)具有足够的强度和良好的动平衡,一保证其工作可靠、使用寿命长。 二、离合器的结构方案分析 2.1车型、技术参数 车型:轻型载货汽车 整车质量(Kg):3830 发动机最大扭矩/转速(N·m/rpm):220/2100 最大功率/转速(Kw/rpm):67/3000 车轮滚动半径:(mm):340 2.2从动盘数的选择 对乘用车和最大质量小于6t的商用车而言,发动机的最大转矩一般不大,离合器通常只设一片从动盘。 2.3压紧弹簧和布置形式的选择 离合器压紧装置可分为周布弹簧式、中央弹簧式、斜置弹簧式、膜片弹簧式

离合器设计计算说明书

广西科技大学《汽车设计》课程设计说明书题目:汽车离合器设计 专业:Vehicle Engineering 班级: 090 学号:222922225233 姓名: czx 指导老师:Mr Wei 完成日期:2012年某月某日

《汽车设计》课程设计指导书 一、课程设计的题目:离合器的设计 二、课程设计的要求 请根据所给的基本参数,设计一套离合器装置。 具体完成任务: (1)离合器膜片弹簧(A3图)1张 (2)设计计算说明书1份 三、课程设计内容及步骤 1、离合器主要参数的确定 (1)根据已知参数,确定离合器形式。 (2)确定离合器主要参数:①后备系数;②单位压力;③摩擦片内外径D、d和厚度b;④摩擦因素f、摩擦面数Z和离合器间隙。(可采用单片式或双片式离合器) (3)摩擦片尺寸校核与材料选择。 2、扭转减震器的设计 (1)扭转减震器选型 (2)扭转减震器主要参数确定 (3)减震弹簧尺寸确定 3、膜片弹簧的设计 (1)膜片弹簧基本参数确定 (2)膜片弹簧强度计算 四、设计要求 1、设计计算说明书 (1)设计计算说明书要包括:目录、任务书、设计内容、参考资料、对课程设计的心得体会等。 (2)设计内容要主要体现:①分析几种不同类型离合器方案,论证自己所选方案的合理性;②进行参数选择与计算时的理论依据、计算步骤及对计算结果合理性的阐述;③对课程设计结果的合理性进行分析。 (3)最终上交的课程设计说明书统一用A4纸打印或撰写,要求排版整洁合理,字迹工整。 2、设计图纸 离合器膜片弹簧A3图纸一张。 尺寸标注、公差标注、技术要求、明细栏等完整。 3、装订顺序 按封面、汽车设计指导书、设计计算说明书、图纸顺序装订。 七、成绩评定 1、设计完成后于11月26日下午4点交给指导老师(137********)。 2、成绩评定:指导教师按学生独立完成工作情况、设计计算说明书及图纸质量等综合考虑后给出成 绩。 3、成绩分五等:优、良、中、及格、不及格。

湿式离合器设计计算

3.2多片湿式离合器的设计 3.2.1摩擦副元件材料与形式 离合器的结构中,摩擦片对离合器工作性能影响很大,而摩擦片材料的选择就尤为重要。下面进行摩擦副元件的选择: 离合器摩擦副元件由摩擦元件及对偶元件两部分组成。其特点是:可在主、从动轴转速差较大的状态下接合,而且接合时平稳、柔顺。离合器摩擦副(又称摩擦对偶)可分为两大类:第一类是金属性的,它的摩擦衬面具有金属性质,如钢对钢,钢对粉末冶金等;第二类是非金属性的,它的摩擦衬面摩擦材料具有非金属性质,如石墨树脂等,它们的对偶可用钢和铸铁。对于坦克离合器摩擦副,由于其工况和传递动力的要求,选择金属型摩擦材料。目前广泛应用的是铜基粉末冶金,它的主要优点是: 1、 有较高的摩擦系数,单位面积工作能力为0.22千瓦/F p FA A =厘米2; 2、 在较大温度变化范围内,摩擦系数变化不大; 3、 允许表面温度高,可达350C ,非金属在250C 以下。故高温耐磨性好,使用寿命长; 4、 机械强度高,有较高的比压力; 5、 导热性好,加上表面开槽可获得良好冷却,允许较长时间打滑 而不致烧蚀。 此次设计选择摩擦副材料为钢对铜基粉末冶金,根据坦克设计180页表6—1可得:可取摩擦副的摩擦系数μ=0.08,许用压强[]p =4MPa 。 3.2.2摩擦转矩计算 多片摩擦离合器的摩擦转矩fc T 与摩擦副数、摩擦系数、压紧力和作用半径有关。其关系式为: e fc z T Fr μ=

式中fc T —摩擦转矩()N M ?; μ—摩擦系数,从动力换档传递扭矩出发,取动摩擦系数; F —摩擦片压紧力()N ; e r —换算半径,将摩擦力都换算为都作用在这半径上; z —摩擦副数。 下面求换算半径e r :(如下图示) 一对摩擦副上一个单元圆环的摩擦转矩为: fc dT p dA μρ=??? 式中 p —单位压力或比压; ρ—圆环半径; dA —单位圆环面积。 而 2dA d πρρ=? 带入前式可得 22fc dT p d πμρρ= 摩擦副全部面积的摩擦转矩为 ρυπd p u T R r fc ?=22 式中r 、R —分别为摩擦片的内外半径。 单位圆环上的压紧力为 2dF pdA p d πρρ==

离合器设计说明书最终

理工大学 离合器课程设计说明书设计题目:宇通城市客车离合器设计 学院班级:汽车与交通学院车辆123班 小组组长:岳川元(201224257) 小组成员:王小铭(201224233)卫(201224204) 明杰(201224252)登民(201224244) 指导老师:林荣会 时间:2014年11月10日

目录 一.离合器设计方案选择 (2) (一)离合器设计基本要求 (2) (二)离合器设计主要参数 (3) (三)离合器结构方案选择 (3) (四)离合器结构概述 (4) (五)膜片弹簧离合器的工作原理 (6) (六)膜片弹簧离合器的优点 (6) 二.离合器摩擦片参数选择 (7) (一)后备系数β (7) (二)初选摩擦片外径D、径d、厚度b (8) (三)离合器传递的最大静摩擦力矩T C (8) (四)离合器单位压力P0 (9) 三.离合器基本参数的校核 (11) (一)摩擦片外径D (11) (二)摩擦片外径比c (11) (三)后备系数值β (11) (四)摩擦片径d (11) (五)单位摩擦面积传递的转矩T co (12) (六)单位压力P o (12) (七)单位摩擦面积滑磨功W (12) (八)摩擦片相关参数整理 (13) 四.膜片弹簧的设计 (14) (一)截锥高度H与板厚h比值和板厚h的选择 (14) (二)自由状态下碟簧部分大端R、小端r的选择和R/r比值 (14) (三)膜片弹簧起始圆锥底角的选择 (15) (四)分离指数目n的选取 (15) (五)切槽宽度δ1、δ2及半径 (15) (六)压盘加载点半径R1和支承环加载点半径r1的确定 (15)

毕业设计:《离合器设计》

毕业设计-《离合器设计》 第1章绪论 1.1选题的目的 本次设计,我力争把离合器设计系统化,为离合器设计者提供一定的参考价值。抛弃传统的推式膜片弹簧离合器,设计新式的拉式膜片弹簧离合器是本次设计的主要特点。 1.2离合器发展历史[1] 近年来各国政府都从资金、技术方面大力发展汽车工业,使其发展速度明显比其它工业要快的多,因此汽车工业迅速成为一个国家工业发展水平的标志。 对于内燃机汽车来说,离合器在机械传动系中作为一个独立的总成而存在,它是汽车传动系中直接与发动机相连接的总成。目前,各种汽车广泛采用的是摩擦式离合器,它是利用摩擦副间的摩擦力来传递转矩的离合器。 在早期研发的离合器中,锥形离合器最为成功。现今所用的盘片式离合器的先驱是多片盘式离合器,它是直到1925年以后才出现的。进入30年代时,只有工程车辆、赛车和大功率的轿车上才采用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向于首选单片干式离合器[1]。 随着汽车发动机转速、功率不断提高和汽车电子技术的高速发展,人们对离合器的要求越来越高。从提高离合器工作性能的角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。随着计算机的发展,设计工作已从手工转向电脑,包括计算、性能演示、计算机绘图、制成后的故障统计等等。 1.3离合器概述 按动力传递顺序来说,离合器应是传动系中的第一个总成。顾名思义,离合器是“离”与“合”矛盾的统一体。离合器的工作,就是受驾驶员操纵,或者分离,或者接合,以完成其本身的任务。离合器是设置在发动机与变速器之间的动力传递机构,其功用是能够在必要时中断动力的传递,保证汽车平稳地起步;保证传动系换档时工作平稳;限制传动系所能承受的最大扭矩,防止传动系过载。为使离合器起到以上几个作用,目前汽车上广泛采用弹簧压紧的摩擦式离合器,摩擦离合器所能传递的最大扭矩取决于摩擦面

离合器设计.

离合器设计指导书 一、设计的目的、任务及要求 1.目的 1)通过选型能了解不同型式离合器之间的差异及优缺点; 2)根据给定车型要求选择合适结构形式的离合器; 3)熟悉离合器设计的一般过程; 4)对离合器选材、设计和制造工艺有一定了解。 2.任务和要求 任务:设计给定车型离合器总成(不包括操纵机构)。 要求:在组长的领导下,各小组成员分工开展设计工作。设计完成后,每组要提交离合器设计说明书一份,从动盘总成装配图一张(1号)和零件图X张(3号)(每位成员需绘制一张图)。以组长为主进行设计工作,每位小组成员都要参方案论证,承担部分设计计算工作。 3.基本参数:按总体设计时给出的,缺少的参数上网查找(类似车型的即可)。 4.参考资料 1)《汽车工程手册》第二分册,机械工业出版社; 2)《离合器》,徐石安等编,人民交通出版社。 二、离合器结构方案选择 离合器结构方案很多,本设计采用盘形摩擦式离合器,主要结构选择如下: 1.从动盘数:单片; 2.压紧弹簧形式:膜片弹簧; 3.分离时离合器受力形式:推式; 4.压盘驱动形式:传力片式; 1)扭转减振器:有; 2)离合器操纵机构:机械式。 一、离合器设计的目的及离合器概述 了解轿车离合器的构造,掌握轿车离合器的工作原理。了解从动盘总成的结构,掌握从动盘总成的设计方法,了解压盘和膜片弹簧的结构,掌握压盘和膜片弹簧的设计方法,通过对以上几方面的了解,从而熟悉轿车离合器的工作原理。学会如何查找文献资料、相关书籍,培养学生动手设计项目、自学的能力,掌握单独设计课题和项目的方法,设计出满足整车要求并符合相关标准、具有良好的制造工艺性且结构简单、便于维护的轿车离合器,为以后从事汽车方面的工作或工作中设计其它项目奠定良好的基础。通过这次课程设计,使学生充分地认识到设计一个工程项目所需经历的步骤,以及身为一个工程技术人员所需具备的素质和所应当完成的工作,为即将进入社会提供了一个良好的学习机会,对于由学生

汽车离合器课程设计说明书

车辆工程 课程设计说明书 生: 级: 号: 导老师: 绩: ________________

日期2010 年 1 月 目录 一.设计内容 (1) 二.方案选择 (1) 三.离合器主要参数的选择 (3)

四.离合器基本参数的优化 (6) 五.主动部分的设计 (7)

说明书 一.设计内容 某轿车离合器主动部分设计,包括: 膜片弹簧设计; 压盘设计; 离合器盖设计。 已知条件:发动机转矩Temax=218N.m;离合器总成的轴向尺寸要求

40~50mm。(根据要求,提供以下某乘用车参数作为设计依据 二.方案选择 车设计采用单片膜片弹簧离合器。本车采用的摩擦式离合器是因为其结构简单,可靠性强,维修方便,目前大多数汽车都采用这种形式的离合器。而采用干式离合器是因为湿式离合器大多是多盘式离合器,用于需要传递较大转矩的离合器,而该车型不在此列。采用膜片弹簧离合器是因为膜片弹簧离合器具有很多优点:首先,由于膜片弹簧具有非线性特性,因此可设计成当摩擦片磨损后,弹簧压力几乎可以保持不变,且可减轻分离离合器时的踏板力,使操纵轻便;其次,膜片弹簧的安装位置对离合器轴的中心线是对的,因此其压力实际上不受离心力的影响,性能稳定,平衡性也好;再者,膜片弹簧本身兼起压紧弹簧和分离杠杆的作用,使离合器的结构大为简化,零件数目减少,质量减小并显著地缩短了其轴向尺寸;另外,由于膜片弹簧与压盘是以整个圆周接触,使压力分布均匀,摩擦片的接触良好,磨损均匀,也易于实现良好的散热通风等。由于膜片弹簧离合器具有上述一系列的优点,并且制造膜片弹簧的工艺水平也在不断地提高,因而这种离合器在轿车及微型、轻型客车上已得到广泛的采用,而且逐渐扩展到载货汽车上。从动盘选择单片式从动盘是一位其结构简单,调整方便。

货车离合器设计说明书

目录 前言 (1) 1、离合器的作用 (1) 2、离合器的组成 (1) 3、货车离合器的选用 (2) 3.1、从动盘选择 (4) 3.1.1单片离合器 (4) 3.1.2双片离合器 (4) 3.2、压紧弹簧和布置形式的设计 (4) 3.3膜片弹簧的支承形式 (6) 3.4压盘驱动方式 (7) 离合器主要参数的选择 (7) 1、摩擦片的计算 (8) 2、离合器基本参数优化 (13) 3、膜片弹簧主要参数的选择 (16) 4、膜片弹簧的载荷与变形关系 (18) 5、膜片弹簧工作点位置的选择 (19) 6、膜片弹簧的应力计算 (20) 7、扭转减振器的设计 (22) 8、减振弹簧的设计 (22) 9、从动盘榖 (25) 10、从动轴的计算 (26) 11、分离轴承的寿命计算 (27) 12、离合器操纵机构的设计 (27) 总结 (31)

货车离合器设计说明书 前言 1、离合器的作用 汽车离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速器的输入轴。摩擦离合器作为一种典型离合器为现代各类型汽车广泛采用,实际上是一种依靠主、从动部件间的摩擦来传递动力且能分离的机构。离合器保证汽车平稳起步、保证变速器换挡时工作平顺、限制超额转矩的传递,防止传动系统过载。离合器是联系发动机和汽车传动系统的“纽带”,因而是汽车传动系统的重要部件。 2、离合器的组成 离合器装置有离合器和离合器操纵机构组成。 离合器主要包括主动部分、从动部分、压紧机构、操纵机构四个部分组成,组成可以有图1表示: 离合器的主动部分是发动机的飞轮、离合器盖、离合器中的压盘,离合器盖通过螺栓固定在飞轮上,离合器盖的动力通过传动片传给压盘。从动部分是从动盘和与之通过花键连接的从动轴(变速器第一轴),从动盘位于压盘和飞轮之间。压紧弹簧装在离合器盖内,周向分布,对亚盘产生压紧力。分离杠杆的指点在离合器盖上,一端作用于压盘,另一端被分离轴承作用。当从动盘被压盘和飞轮加紧形成一个整体时。发动机的动力通过飞轮以及离合器盖、压盘传递给从动盘,由从动轴输出,这

离合器DS395的设计说明书

第一章引言 离合器装在发动机与变速器之间,汽车从启动到行驶的整个过程中,经常需要使用离合器。 它的作用是使发动机与变速器之间能逐渐接合,从而保证汽车平稳起步;暂时切断发动机与变速器之间的联系,以便于换档和减少换档时的冲击;当汽车紧急制动时能起分离作用,防止变速器等传动系统过载,起到一定的保护作用。 离合器类似开关,接合或断离动力传递作用,因此,任何形式的汽车都有离合装置,只是形式不同而已。 自动变速器的液力变扭器已经具有离合作用,而手动变速器的离合器主要是采用摩擦形式,并独立成为一种装置,有自己的控制系统。 因此,普通手动变速器汽车都有离合器踏板装置,安装在驾车者座椅地面前左端。本文内容主要阐述手动变速器轿车上的摩擦片式离合器及其控制形式。 轿车采用膜片离合器,它由主动部分(由壳体、膜片弹簧、压盘等组成的整体并用螺钉固定在发动机飞轮上),被动部分(由摩擦片与从动盘组成)和操纵部分组成。 被动部分装在飞轮与压盘之间,通过滑动花键套在变速器的输入轴上。在膜片弹簧的弹力作用下,从动盘、压盘与飞轮夹紧,发动机工作时,飞轮和压盘通过它们与摩擦片之间的摩擦带动从动盘一起旋转,将扭矩传递给变速器主动轴。当驾车者踩下离合器踏板,操纵部分的分离叉将分离轴承推向前,推动膜片弹簧下端,使膜片弹簧上端绕支点转动并拉动压盘向后移动,解除了压盘与摩擦片之间的压紧力,发动机只能带动主动部分旋转,无法将扭矩传递给变速器。当驾车者松开离合器踏板,操纵部分将分离轴承拉回来,膜片弹簧下端压力解除,恢复原位,压盘在膜片弹簧压力下又向前移动并将摩擦片压紧,发动机又可将扭矩传递至变速器。 摩擦片上还均匀分布了若干只横置的螺旋小弹簧,用于减少离合时的冲击和振动。 目前,汽车离合器操纵形式有拉线和液压式两种,轿车多用液压操纵式,它具有噪声小、省力、平稳、布置方便的优点,由总泵、分泵、软管、踏板等组成。当驾车者踩下离合器踏板时,推杆推动总泵活塞使油压增高,通过软管进入分泵,迫使分泵拉杆推动分离叉,将分离轴承推向前;当驾车者松开离合器踏板时,液压解除,分离叉在回位弹簧作用下逐渐退回原位,离合器又处在接合状态。 实际上早在1920年就出现了单片干式离合器,这和前面提到的与发明石棉基的摩擦面

(汽车行业)汽车离合器设计说明书

目录 第1章汽车离合器综述 (2) 第2章设计方案的分析与确定 (4) 2.1离合器分类 (4) 2.2离合器形式的选择 (4) _Toc281389034第3章主要零部件设计计算和验算的简要过程 (8) 3.1 摩擦片的设计 (8) 3.1.1 初选摩擦片外径D、内径d、厚度b (8) 3.1.2 后备系数β (9) (9) 3.1.3 单位压力P O 3.1.4 摩擦因数f、离合器间隙Δt (9) 3.2 离合器基本参数的优化 (10) 3.2.1 设计变量 (10) 3.2.2 目标函数 (10) 3.2.3 约束条件 (10) 3.3 膜片弹簧的设计 (12) 3.3.1 膜片弹簧的基本参数的选择 (12) 3.3.2 膜片弹簧的弹性特性曲线 (13) 3.3.3 强度校核 (15) 3.4从动盘毂花键的强度验算 (15) 第4章主要部件结构设计说明 (16) 4.1从动盘总成的设计 (16) 4.1.1从动盘毂 (16) 4.1.2 从动片 (17) 4.1.3 波形片和减振弹簧 (17) 4.2离合器盖和压盘的方式选择 (17) 4.2.1 离合器盖 (17) 4.2.2 压盘 (17) 4.3分离轴承的选择 (18) 4.4离合器的通风散热 (18) 4.5离合器种类的选择 (18) 4.6分离时离合器受力形式的选择 (18) 4.7扭转减振器的设计 (18) 4.8离合器的操纵机构选择 (22) 第5章经济、技术分析及对设计所作的简要评语 (23) 5.1经济、技术分析 (23) 5.2简评 (24) 参考文献 (24) 致谢 (26) 附录: (27)

相关文档
最新文档