基于单片机的光源自动跟踪系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的光源自动跟踪系统设计
摘要
与其他能源相比, 太阳能具有独特的优点, 向太阳这个取之不尽的能源宝库索取能量,实现人类历史上的能源变革,已成为今后能源开发的主要趋向。
用现代化方法大规模地开发利用太阳能,已成为摆在人们面前的一项重要任务。
然而它也存在着间歇性、光照方向和强度随时间不断变化的问题, 这就对太阳能的收集和利用提出了更高的要求。
目前很多太阳能电池板阵列没有充分利用太阳能资源, 发电效率低下。
据实验, 在太阳能光发电中, 相同条件下采用自动跟踪发电设备要比固定发电设备的发电量提高35%左右,因此在太阳能利用中进行跟踪是十分必要的。
光源跟踪技术是一项实用的技术,在很多领域均有应用,尤其是在太阳能设备上,能够使其工作效率更高,能量吸收率更高。
给出了一种基于单片机的光源自动跟踪系统设计方案, 该设计使用TI公司的超低功耗的AT89C51单片机作为整个系统的控制核心,主要由电机驱动,光源检测等组成。
利用4路光敏传感器来检测光源的位置并将检测到的信号经过放大传给控制器AT89C51单片机,经过单片机的运算和处理来确定光源的运动趋势,并将运算的控制信号传给两台步进电机,使其跟随光源运动。
当水平方向上的2路光敏传感器管测量数值相对接近,同时竖直方向上的2路光敏传感器测量数值也相对接近时,位于竖直传感器中间的激光笔将精确的指向光源。
同时将光敏传感器检测的信号显示在LCD液晶屏幕上。
关键词:AT89C51单片机,光源,自动跟踪,检测,传感器
ABSTRACT
Compared with other energy, solar energy has a unique advantage, the inexhaustible energy treasure to the sun for energy, realize the energy change in human history, has become the main future energy development trend. With modern methods for the development and utilization of solar energy on a large scale, has become an important task in front of people. However it also has intermittent, illumination direction and intensity of changing over time, this is the collection and utilization of solar energy put forward higher requirements. At present many solar panel array did not make full use of solar energy resources, power generation efficiency is low. According to the experiment, in the solar energy light electricity, under the same conditions using automatic tracking power equipment to around 35% higher than that of fixed power equipment capacity, therefore in the solar tracking is very necessary. Light source tracking technology is a practical technology, are applied in many fields, especially in solar energy equipment, able to make it work more efficient, higher energy absorption.
This design gives a light source automatic tracking system based on single chip design scheme, the design USES TI company's ultra-low power consumption of AT89C51 as the control core of the whole system, mainly by motor driven, light detection, etc. Using four-way photosensitive sensor to detect the position of the light source and detected signals are amplified to controller AT89C51, through MCU operation and processing to determine the movement trend of light source, and the operation of the control signal to the two stepper motors, to make it follow the light source. When the horizontal 2 road of photosensitive sensor measurements are relatively close, at the same time 2 road photosensitive sensor measurement values on the vertical direction is relatively close, the laser pointer, in the middle of a vertical
sensors will be accurate to point light source. At the same time the photosensitive sensor detection signal is displayed in the LCD screen.
Key words: AT89C51, light source, automatic tracking, detection, sensor
目录
1.绪论 (1)
1.1 概述 (1)
1.2太阳能的应用 (1)
1.3光源跟踪系统发展现状 (2)
1.4本文主要内容 (3)
2系统设计 (4)
2.1系统设计要求 (4)
2.1.1跟踪光源设计 (4)
2.1.2太阳光角度的计算 (5)
2.1.3太阳光强度检测系统 (9)
2.2方案比较 (10)
2.2.1主控芯片的选择 (10)
2.2.2电动机的选择 (11)
2.2.3电动机驱动电路的选择 (14)
2.2.4传感器的选择 (14)
2.2.5显示器的选择 (15)
2.2.6转换器的选择 (16)
2.2.7太阳能电池板 (16)
3硬件设计 (18)
3.1硬件方框图和电路设计 (18)
3.2主控系统 (18)
3.3步进电机驱动电路设计 (20)
3.4按键设计 (23)
3.5液晶显示器设计 (23)
3.6信号采集处理 (24)
4软件设计 (26)
4.1主流程图 (26)
4.2子程序流程图 (26)
5系统调试和结果分析 (33)
5.1仿真 (33)
5.2 调试与分析 (35)
总结 (37)
致谢 (38)
参考文献 (39)
附录1 (40)
附录2 (41)
1.绪论
1.1 概述
该设计采用Intel公司的超低功耗,低电压,高性能的AT89C51 单片机作为整个系统的核心,主要由电机驱动,光源检测,采集信号等组成。
利用四象限硅光电池作为太阳跟踪误差校正用传感器来检测光源的位置并将检测到的信号经
过放大传给控制单片机,经过单片机的运算和处理来确定光源的运动趋势,并将运算的控制信号传给两台步进电机,使其跟随光源运动。
当水平方向上的2路光敏传感器测量数值相对接近,同时竖直方向上的2路光敏传感器测量数值也相对接近时,位于竖直传感器中间的激光笔将精确的指向光源。
同时将光敏传感器检测的信号显示在LCD液晶屏幕上。
本系统可以扩展为以后的太阳的跟踪。
太阳能作为一种清洁无污染的能源,发展前景非常广阔。
然而它也存在着间歇性、光照方向和强度随时间不断变化的问题,这就对太阳能的收集和利用提出了更高的要求。
目前很多太阳能电池板阵列基本上都是固定的,没有充分利用太阳能资源,发电效率低下。
据实验,在太阳能光发电中,相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高35%,因此在太阳能利用中,进行跟踪是十分必要的。
本文给出一种基于单片机的太阳光自动跟踪系统设计方案,该系统不仅能自动根据太阳光方向来调整太阳能电池板朝向,结构简单、成本低,而且在跟踪过程中能自动记忆和更正不同时间的坐标位置,不必人工干预,特别适合天气变化比较复杂和无人值守的情况,有效地提高了太阳能的利用率,有较好的推广应用价值。
1.2太阳能的应用
据记载,人类利用太阳能已有3000多年的历史了。
周代,咱们的祖先就能利用凹面镜的聚光焦点向日取火,太阳能在医学方面也有应用,在《黄帝内经》和《本草纲目》中记载着我们祖先在公元前3~5世纪就掌握了日光疗法。
在近代,太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯发明第一台太阳能驱动的发电机算起。
之后又出现太阳能动力装置。
渐渐的出现了实用型硅太阳电池、太阳能热水器等。
这些都为我们的合理的
利用太阳能这宝贵资源打下了结实的基础。
太阳能的利用途径:
1.直接利用太阳光照射,直接获取太阳光的热量,使水分蒸发。
2.光合作用。
3.通过光热转换,把太阳光转换成热能嫁衣利用。
4.进行光电转换,把太阳光转换成电能加以利用。
如今太阳能应用在各种不同领域,在我们的生活中太阳能的运用几乎随处可见,如热水器、开水器、干燥器、路灯、采暖和制冷,温室与太阳房,太阳灶和高温炉,海水淡化装置、水泵、热力发电装置及太阳能医疗器具等。
1.3光源跟踪系统发展现状
太阳能作为一种取之不尽、用之不竭、具有极大开发潜能的清洁能源。
对人类缓解能源危机有现实意义。
在太阳能电池、太阳能热水器等这些领域都要对光源进行跟踪。
研究提高太阳能发电系统的太阳能利用率、降低发电系统建造成本,并采用相关电力电子装置实施这些技术,是太阳能应用领域面临的主要难题。
牵着可以通过采用太阳光源跟踪技术提高太阳能的接受效率和利用率;后者可以在组建实物系统之前,通过仿真来发现问题,避免由于设计不当所带来的较大浪费,进而一定程度上降低系统建造成本。
国内外实现太阳能跟踪的方法很多,按照跟踪自由度的多少,太阳光源跟踪伺服系统可以分为两类:单轴和双轴。
单轴跟踪是在一根轴上做简单的旋转,在一天的时间内,方位角从东向西运移,其实现方式简单,但跟踪误差较大;双轴跟踪可以从东西以及垂直方向旋转,结构相对比较复杂,但跟踪精度明显优于单轴跟踪,现已被普遍采用。
下图1.1是双轴太阳能跟踪系统:
图1.1 双轴太阳能跟踪系统
而且,现在太阳能开发利用工作正处于前所未有的大发展时期,各国都加强了对
太阳能研究工作的计划性,不少国家还制定了近期和远期的阳光计划。
开发利用太阳能成为政府行为,支持力度大大加强。
国际间的合作十分活跃,一些第三世界国家也开始积极参与太阳能开发利用工作去。
等到太阳能技术的突破,将会有大量消费者去购置。
1.4本文主要内容
太阳能跟踪系统的目的是在太阳有阳光的天气时,全天候使太阳能电池板垂直于太阳,这样大大提高了太阳能电池板的发电量。
本文采用了独特设计的太阳光跟踪定位传感器、跟踪控制器及传动执行机构。
当阳光照射到太阳能电池板上,电池板就会产生电能。
阳光越充足,电池板产生的电能也就越大,但是太阳东升西落,其位置在一天内并不是固定的,因此太阳能电池板需要尽可能地跟随太阳运动才能获得充足的阳光。
本文以基于步进电机的双轴跟踪系统为基础,对其进行仿真分析,明确系统参数对跟踪性能的影响,为太阳光源跟踪系统的进一步优化设计提供了理论依据,具有很好的使用价值。
其主要内容如下:
1.系统设计要求,方案比较;
2.硬件电路设计;
3.软件设计以及流程图的绘制;
4.系统调试和结果分析。
2系统设计
2.1系统设计要求
2.1.1跟踪光源设计
本设计是一个光源跟踪系统,主要由传感器来对光照检测与处理,控制器分析与处理,运行和显示这几个部分构成。
整个系统是以单片机为控制核心,通过四个硅光电池作象限传感器来检测光照,依据光照度的变化、大小来判断出点光源的位置与运动趋势,并将光源运动分解为水平和竖直方向的二维运动,借以来控制水平电机与竖直电机的旋转角度。
当水平方向上的两传感器的测量数值相对接近,同时竖直方向上的两传感器的测量数值也相对接近时,位于竖直传感器中间的激光笔将精确的指向光源。
太阳跟随系统常常用在太阳能发电站里。
当阳光照射到太阳能电池板上,电池板就会产生电能。
阳光越充足,电池板产生的电能也就越大,但是太阳东升西落,其位置在一天内并不是固定的,因此太阳能电池板需要尽可能地跟随太阳运动才能获得充足的阳光。
根据图2.1.1的系统框图,可以设计一个太阳跟随系统的模拟,电路中四个光敏器件A,A'和B,B'构成两组,用于检测光线,经过NE555构成的单稳对信号整形后分别送到单片机的P3.0和P3.1。
如果光线变暗,则光敏器件阻值增大,达到翻转阈值后单稳输出端出现高电平,单片机的P3.0和P3.1接收到这个高电平就知道太阳能电池板光线不足。
图2.1.1 系统框图
当检测到太阳能电池板上的光线不足时,单片机将通过L298驱动X轴和Y轴电动机MX和MY正转和反转,形成支架的组合运动直到两个轴的光敏传感器都获得最大的太阳光为止。
2.1.2太阳光角度的计算
太阳光入射角∮产生的余弦效应和解决措施由于存在一个约23.5度的黄赤交角,并且随着地球的自转与公转,便产生了太阳每天时角和四季赤纬角的变化,如果用固定式光伏组件收集太阳能,只有在每一年的某个瞬间,太阳的光线才真正垂直地照射在太阳能收集器上,此时光伏组件接收太阳能的效率才是最高,其它时间太阳的光线与光伏组件的法线都存在一个小于90°的太阳光入射夹角∮(在跟踪装置的设计中定义为跟踪角)。
如下图2.1.2所示,设OCFG平面为光伏组件的表面,OZ为其法线,EO为太阳的入射光线,∮角为入射角,α和β角分别是光线入射角∮在东西立面OADG和南北立面OABC上的投影角,把α和β角分别定义为东西入射角和南北入射角,这里将∮角分解为α和β角,对简化双轴跟踪装置的设计具有一定的意义。
图2.1.2 跟踪角
已知α和β角求得∮角为:
因φsin EO OF =所以φαβφsin cos 22EO tg tg EO =+
①
如图2.1.3,太阳光倾斜照射在M 面上的能量只相当于垂直照射在其投影面M ′上的能量,而Sm ′=Sm cos 准,所以当光线倾斜照射时的能量只有垂直照射在相同面积的cos ∮倍,造成收集太阳能的效率降低,这就是有关太阳能收集中的“余弦效应”。
图2.1.3 余弦效应
α
βφβφββφαφ2222c o s c o s c o s c o s
tg tg EO OC CF OF OC
tg EO OAtg AB OC
tg EO OAtg AD EO OA +=+========α
βφαβφ2222tg tg arctg tg tg tg +=+
=
如果设计一装置使东西入射角α和南北入射角β接近于0,则光线入射角∮也接近于0,光伏组件接收太阳能效率就能得到提高,以下的双轴跟踪方式都能实现这一目的。
跟踪装置的类型主要有单轴跟踪和双轴跟踪两大类别。
其中双轴自动跟踪装置按机械结构可以概括分类为固定的方位轴旋转及仰角跟踪、随仰角转动的方位轴旋转及仰角跟踪、立式旋转及仰角跟踪、纬度方向自旋及仰角跟踪四种类型,按自动控制可以分为主动控制和被动控制,其中被动控制方式的设计较多,设计是利用光电效应控制电机运转,他们是属于被动跟踪方式,这种控制方式易受多变天气的影响。
一种新型双轴自动跟踪装置设计的控制部分是采用主动与被动相结合的方式,方位角为时间控制的主动跟踪方式,而仰角是采用光电控制的被动跟踪方式。
这种跟踪方式不需要步进电机和复杂的电路,跟踪时也不受多变天气的影响。
固定式太阳能光伏组件全年累计接收的能量由于太阳在东西向方位角和南北方向仰角时刻在发生变化,同时由于角度的变化而使太阳辐射所穿越地球大气层的厚度不一样,部分太阳能被大气层吸收、散射和反射掉,由此使得到达地面的太阳能也时刻发生着变化。
所以如果要较准确地计算出地球上太阳能光伏组件接收的能量的多少就很复杂,但可以近似计算出太阳能光伏发电系统因自动跟踪太阳而增效的百分比。
由于①式中的α角和β角的变化是独立的,因而计算时将它们依次作不跟踪的假设,利用积分逐步求出两个方向都不跟踪时全年能量的累积,和有自动跟踪的光伏组件全年收集的太阳能量比较,可求出自动跟踪增效的百分比。
∑∆∆+⋅⋅⋅⋅⋅⋅+∆∆+∆∆=)2cos 2cos 2cos (2211n n d t t t t t t M Q πππtdt t M Q t t d ∑⎰-=21)2
cos(2ππM
dt t M Q d 38.7)2cos(21712=-=∑⎰ππ 图2.1.4 方位角
假设南北向(仰角)太阳能光伏组件已有自动跟踪装置,全年跟随太阳运动,即β=0,而光伏组件东西向(方位角固定在正午的位置)没有自动跟踪,计算光伏组件每天接收的能量∑Q d 。
设太阳辐射能量为Mcal/m2.h,东西向由于太阳入射角的变化,在某天的某个很短的时间段Δt 内,1m2太阳能光伏组件接收的太阳能量:Q=M Δtcosα ②
如图2.1.4,设每天太阳能光伏组件接收的日照时间为10小时,时间t 1在中午12:00时,入射角α约为0度,根据地球的日运动规律,时间t 和日运动角α的关系式为:α=π12t -π (7<t<17) ③ 所以①式中量:
④
则在一天的10小时内,固定式太阳能光伏组件接收太阳能累计为:
⑤ 一天接收能量的累积为:
⑥
)2cos(ππ-∆=t M Q
两个方向都不跟踪的情况下,太阳能光伏组件全年接收能量的累计由于极轴与黄道面不是垂直相交,而是呈66.5°角,这是造成每天太阳高低角不相同的原因。
全年太阳赤纬角(日地中心的连线与赤道面之间的夹角)的变化在夏至和冬至时刻出现极值,分别为正负23.5°,这就造成太阳全年南北入射角的变化约为47°,因而在南北方向太阳能的收集也存在余弦效应。
图2.1.5 极限位置
以下按赤纬角在365天内均匀变化时收集能量的近似计算,则每天南北入射角的变化为:2×47°365天=0.258°=0.00143π
设南北入射角为0°时的那个时刻为第0天,则当南北入射角β为0.1306π时,是第91天,也就是图2.1.5中的上极限位置,所以南北入射角β和天数N 的关系式是:β=0.00143π
所以在某几天的时段ΔN 里收集的太阳能量为:
Q=7.38M ΔNcos0.00143πVN
一年中1m2固定的光伏组件收集的总能量为:
2.1.3太阳光强度检测系统
由于检测系统由传感器和各个环节组成,为了保证检测过程中能够忠实地把所需信息从信号源通过其载体信号传输到输出端,整个过程中不失真且不受干扰。
因此对传感器和检测系统的基本要求如下:
1) 精度、灵敏度和分辨率高;
2) 线性、稳定性和重复性好,工作可靠;
3) 静动态特性好,测量范围大;
4) 抗干扰能力强;
M N M NdN M Q n 261200143.0sin 00143.038.7400143.0cos 38.74910910=⨯⨯==∑⎰ππ
π
5)体积小,质量轻,操作简便,价格便宜。
各方位检测
由于微型光电池的短路电流在很大范围内与光照度成线性关系,因此检测连续变化的光照度时,应当尽量减小负载电阻,使光电池在接近短路的状态工作,也就是把光电池作为电流源来使用。
在光信号断续变化的场合,也可以把光电池作为电压源使用。
其优点为调节较为精确,电路也比较简单。
结构上,采用N 路微型光电池均匀分布在一个半圆弧上,当太阳正对某一个微型光电池时,此时它的输出最大,系统就能判断此时太阳的位置而进行跟踪。
当太阳转到两个微型光电池中间时,此时由于这两路光电池输出相等,也能判断太阳的方位而进行跟踪。
由于每2个微型光电池之间就有一个中间位置,所以共有N-1个这样的位置,这样N路微型光电池共能判别2N-1个太阳方位。
假设我们需要的跟踪范围是150度,那么可识别的精度则为150/(2N-1)度,我们可以通过选择N的值来方便调整需要的精度。
这样太阳任何时间出现在圆弧的任意位置上,只要在可检测的那2N-1个方位上,电池板便可以迅速跟踪。
处理器检测到跟踪信号后驱动电机正反转,无需在每晚回到初始位置等候太阳,避免每天开始阴天时系统多做无用的跟踪,而是随时根据那N路微型光电池检测太阳的方位,从而将系统运行功耗降到最低。
考虑到跟踪系统在多云和阴雨天还进行跟踪会加大系统运行功耗,综合跟踪利用效率不高,故我们采用分级跟踪。
当光照强度达到上限值时,实行密跟踪。
当光强度达到下限值时,停止跟踪。
而在中间状态时实行疏跟踪。
这样不仅充分利用太阳光光照强度大是的获得更多的能源。
在光照强度一般但还可以发电时,放慢跟踪幅度,这样可以有效降低系统运行功耗而对输出功率没太大影响。
当光照强度达到下限值时,停止跟踪,这样就避免无效的跟踪从而降低系统运行功耗,二档光照强度满足要求是在迅速检测方位并跟踪。
2.2方案比较
2.2.1主控芯片的选择
根据本题的要求,整个系统中必须要有一个主控芯片来处理数据和控制操作,主要考虑以下两种方案:
方案一:MSP430单片机。
16低功耗单片机,性能良好。
低电源电压范围:1.8-3.6V。
超低功耗:拥有5种低功耗模式(LPM0-LPM4)。
灵活的时钟使用模式。
高速的运算能力:16位RISC架构,125ns指令周期。
丰富的功能模块:这些功能模块包括 A 多通道10-14位AD转换器;B 双路12位DA 转换器;C 比较器;D 液晶驱动器;E 电源电压检测;F 串行口USART(UART/SPI);G 硬件乘法器;H 看门狗定时器,多个16位、8位定时器(可进行捕获,比较,PWM输出);I DMA控制器。
FLASH存储器:采用先下载程序到FLASH内,再在器件内通过软件控制程序的运行;MSP430芯片上包括JTAG接口:仿真调试通过一个简单的JTAG接口转换器就可以方便的实现如设置断点、单步执行、读写寄存器等调试;快速灵活的变成方式:可通过JTAG和BSL 两种方式向CPU内装在程序。
功能虽多,但是很多都用不到,其电压范围小;结构太过复杂,不太适合。
方案二:AT89C51单片机是一种低功耗、高性能8位单片机。
其指令是采用被称为“CISC”的复杂指令,共有111条指令。
自身电压5V,有两种低功耗方式:待机方式和掉电方式。
AT89C5l是片内带有4KB的Flash可编程可擦除只读存贮器,它采用CMOS工艺和高密度非易失性存贮器技术,而且引脚和指令系统都与MCS-51兼容。
片内的Flash存贮器允许在系统内可改编程序或用常规的非易失性存贮器编程器来编程。
AT89C5l是一种功能强、灵活性高且价格合理的单片机,可方便地应用在各种控制领域。
由于它是最早进入中国的单片机,人们对它最熟悉不过了,再加上我国各方人士的努力,创造开发了不少适合我们使用开发的工具。
其价格低廉,使用方法简单。
通过上面的比较本系统选取AT89C51系列,即选取方案二。
2.2.2电动机的选择
本文中电机的主要作用是调整激光笔的位置,指向光源,可选取的类型如下方案:
方案一:步进电机。
在非超载的情况下,电机的转速、停止位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。
每给一次脉冲信号,电机能够转过一个步距角。
步进电机也叫脉冲电机,是一种将电脉冲信号转换成相应的角位移或直线位移数字—/模拟装置。
其优点有很多,因而广泛应用于机械、冶金、轻工、计算机外围设备、仪器仪表、军工产品等领域。
具体来讲,其优点如下:
①输出角与输入脉冲严格成比例,且在时间上同步。
步进电机的步距角不受各种干扰因素,如电压的大小、电流的数值、波形等的影响,转子的速度主要取决于脉冲信号的频率,总的位移量则取决于总脉冲数。
②容易实现正、反转和启、停控制,启、停时间短。
③输出转角的精度高,无积累误差。
步进电机实际步距角与理论步距角总有一定的误差,且误差可以累加,但是当步进电机转过一周后,总的误差又回到零了。
④直接用数字信号控制,与计算机接口方便。
⑤维修方便,寿命长。
方案二:直流减速电机。
此电机在正常通电状态下,转速平稳,角度的变化也近乎连续,控制简单方便。
根据设计的要求可知,直流减速电机存在的明显缺陷速度不容易控制,而步进电机的控制和实现是相对简单一些。
因而选用方案一。
步进电机的性能指标
1)步距角精度(Δα)
在讨论步距角精度之前,先介绍步距角的概念。
步距角就是步进电机输入一个脉冲所转过的角度。
步距角为:
θ=360°/(m·z·k)
式中,m为定子绕组的相数;z为转子的齿数;k为通电方式系数,整部方式k=1,半步方式k=2.步距角精度是指步进电机在空载时每步实际转过的角度与理论设计的步距角之差,以分(′)表示。
步进电机的静态步进误差一般在10′之内。
引起误差的原因主要是定子和转子冲片的精度,齿槽分布不均匀或气隙不均匀等。
在实际使用中,常以累计误差表示步距角精度。
注意,步进电机的步距角累计误差在360°后清零。
2)静态距角特性
在空载状态下,给步进电机通电,则转子齿的中心线和定子齿的中心线重合,转子上没有转矩输出,转子处在静止状态。
当电动机轴上外加一个负载转矩后,转子则要产生一个抗衡负载的电磁力矩,此时转子相对于定子按一定方向转动一个角度,该角度称之为失调角。
失调角θ和静态电磁转矩T j之间满足:
T j=T jmax sinθ。