船舶轴系扭转振动有限元分析及求解

船舶轴系扭转振动有限元分析及求解
船舶轴系扭转振动有限元分析及求解

船舶振动第九章

第九章船舶的主要激励 船上出现的有害振动主要是由螺旋桨、机器(主机、发电机、发动机、泵、通风机)和波浪激励引起的。 §9-1 螺旋桨的激励 一.概述 1.有害振动70%是由桨激励引起的。 2.因激励幅值过大或者虽然激励幅值不算太大,但却激起船舶总体或者局部结构共振,都将造成振动响应过大,在船上产生有害振动。

3.桨产生的激励有两种: 1)轴频激励(一阶激励或一阶干扰) 由桨叶静力、动力不平衡引起的轴频激励,其激励频率等于桨轴转速,它与桨的制造质量有关,与水动力不平衡有关。 2)叶频激励: 桨在不均匀流场中运转而诱导出的高阶激励(叶频、倍叶频),其激励频率等于桨叶数的整数倍,即叶频、2倍叶频等,有表面力和轴承力两种。 4.影响桨激励的因素: 1)桨的形状参数; 2)船尾部线型、附体; 3)航速。

5.轴承力和表面力: 1)表面力: 桨旋转时经水传至船体表面的脉动水压力。 2)轴承力: 因伴流不均匀导致桨叶上承受周期性变化的力,该力通过桨轴和轴承作用于船上。 注:一般表面力是主要的,即脉动压力主要。 6.桨脉动压力产生的原因: 1)螺旋涡系: 桨工作时,叶面与叶背的压力差在叶梢处形成螺旋涡系,使桨附近水中各点的压力周期性变化,压力场内船体结构受周期性脉压作用。桨载荷(推力和力矩)不同,涡旋强度亦不同。

2)叶厚效应: 桨叶有厚度,在流场中运动时,该场中某一点P处的压力将随着桨叶的接近和远离该点而发生周期性变化,由此形成对结构的脉动压力,这种效应称为叶厚效应。注:(敞水均匀流场,脉动压力仍存在,船后不均匀流场脉压波动加大) 3)空泡: 空泡体积变化、生与灭,造成脉压幅值变化,它对表面力的影响很大。

轴系扭振

汽轮发电机组的轴系扭振 电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。 产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。 从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。其中影响较大的可归纳为以下四个方面: 1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种 类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。 2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械 应力。例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短 路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同 时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭 转振动。 3.电力系统次同步振荡对轴系扭振的影响:在电力系统高压远距离输电线路上,当采用串联补偿电容用以提高输电能力时,该电容器同被补偿的输电线 路的电感,将构成L-C回路(略去回路电阻)并产生谐振。当电网频率与上 述的谐振频率的差值与轴系某一机械固有扭振频率相同或接近时,则上述的 电气谐振与机械扭振合拍并相互激励,从而给机组轴系的安全运行构成严重 的威胁。由于电气谐振频率低于电网频率,通常称为次同步振荡。 4.电力系统负序电流对轴系扭振的影响:发电机定子绕组中的负序电流可由三相负荷不平衡、各种不对称短路、断线故障引起。负序电流相当于一个外力 源,因此由负序电流产生的轴系扭振有别于上述的自激扭振,并称之为强迫 扭振。负序电流在电机中产生的旋转磁场与转子的励磁磁场相互作用,并产 生交变转矩作用在轴系上,如果这一交变转矩的频率同机组轴系某一个固有 的扭振频率重合,就会激发起轴系的扭振。 预防和抑制轴系扭振的措施可以从设计制造、运行方式,机—电配合、在线监测等几个方面针对不同的情况采取相应的措施。 设计制造,是指包括汽轮发电机轴系扭振频率、绕组的设计、选材、工艺和机械加工以及输电系统的线路的结构方式、继电保护、控制手段以及串联电容补偿方式的设计与选择

船体振动学名词解释简答

1.系统的自由度:确定振动系统运动所需的独立坐标数目即为系统的自由度数。 2.广义坐标:这种确定系统在空间位置的独立参变量称为广义坐标。 3.线性振动:在这些条件下,系统的振动可以用常系数线性微分方程来描述,称为线性振动。 4.自由振动:系统对初始激励的响应通常称为自由振动。 5.强迫振动:对外部作用力的响应称为强迫振动。 6.干摩擦阻尼力:当系统与外界的固体相接触运动时,即产生摩擦阻力,称为干摩擦阻尼力。 7.粘性阻尼力:它是系统与外界粘性流体接触时,在速度不高的情况下所产生的阻尼力。 8.流体动力阻力:当系统与外界的粘性流体接触,且速度较高,并在粘性较小的流体中运动时,即发生与速度平方成正比的阻力,称为流体动力阻力。 9.材料内阻尼力:是因为实际材料并不是完全弹性而引起的,又称材料的非弹性阻尼。 10.结构内阻尼力:是因为系统本身结构装配或连接而引起的。 11.准周期振动:这种由于振动系统受到阻尼力作用,造成能量损失而使振幅逐渐减小的振动称为衰减振动,或称为准周期振动。 12.均匀直梁弯曲自由振动的特性:(1)均匀直梁是具有分布质量及抗弯刚度的无限自由度系统(2)固有频率和固有振形是结构的固有特性,不仅与材料的性质、结构的刚度等因数有关,而且还和边界条件有关(3)当梁作任一主振动时,类似于单自由度系统的振动(4)在所讨论的线性振动范围内,均匀直梁弯曲自由振动是无限多个主振动的线性叠加,梁中任一点的运动则是各主振动所引起运动的总和。(5)固有振形具有正交性,即各固有振形之间是相互独立的。 13.Timoshenko梁理论:一般的梁单元,是基于初等力学中的平截面变形假定,在这个假定中,实际上认为弯曲变形是主要的变形,剪切变形是次要的变形,因而可以不计,这对于高度远小于跨度的实腹梁来说,不会引起显著的误差,但对于有些空腹梁或都高跨比不是很小的梁来说,就不太精确了,所以有必要计及剪切变形,Timoshenko梁就是能考虑剪切变形的梁。 14.转动惯量和剪切变形对梁固有频率的影响:从物理意义上说,剪切的作用使系统的刚度下降,转动惯量使系统的有效质量增加,这两方面的影响均使系统的固有频率降低。其中剪切的影响大于转动惯量的影响。

轴系扭振

电信号扰动下的轴系扭振 摘要 本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。 关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动 1.引言 转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。 当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法 (TMM)解决频域内的动态问题。TMM使用了一种匹配过程,即从系统一侧的边界条 1

船舶柴油机的轴系扭转振动的分析与研究

船舶柴油机的轴系扭转振动的分析与研究 【摘要】本文通过一些国内因轴系扭转振动而引起的断轴断桨的事故实例,来分析引起轴系扭转振动的主要原因,分析扭振主要特性,并提取一些减振和防振的基本控制措施。 【关键词】船舶柴油机轴系扭振危害分析措施 在现代船舶机械工程中,船舶柴油机轴系扭转振动已经成为一个很普遍的问题,它是引起船舶动力装置故障的一个很常见的原因,国内外因轴系扭转而引起的断轴断桨的事故也屡见不鲜,随着科学水平的提高和航运业的发展,人们越来越重视船舶柴油机组的轴系扭转振动,我国《长江水系钢质船舶建造规范》和《钢质海船入级与建造规范》(简称《钢规》)和也均规定了在设计和制造船舶过程中,必须要向船级社呈报柴油机组的轴系扭转振动测量和计算报告,以此来表明轴系扭转振动的有关测量特性指标均在“规范”的允许范围内。 1 船舶柴油机轴系扭转振动现象简介 凡具有弹性与惯性的物体,在外力作用下都能产生振动现象。它在机械,建筑,电工,土木等工程中非常普遍的存在着。振动是一种周期性的运动,在许多场合下以谐振的形式出现的,船舶振动按其特点和形式可分为三种,船体振动,机械设备及仪器仪表振动,和轴系振动。船舶柴油机轴系振动按其形式可分为三种:扭转振动,纵向振动,横向振动。柴油机扭转振动主要是由气缸内燃气压力周期性变化引起的,它的主要表现是轴系上各质点围绕轴系的旋转方向来回不停的扭摆,各轴段产生不相同的扭角。纵向振动主要是由螺旋桨周期性的推力所引起的。横向振动主要是由转抽的不平衡,如螺旋桨的悬重以及伴流不均匀产生的推力不均匀等的力的合成。 船舶由于振动引起的危害不但可以产生噪音,严重影响旅客和船员休息,还会造成仪器和仪表的损害,严重的时候甚至出现船体裂缝断轴断桨等海损事故,直接影响船舶的航行安全。而在船舶柴油机轴系的三种振动中,产生危害最大的便是扭转振动,因扭转振动而引起的海损事故也最多,因此对扭转振动的研究也最多。而且当柴油机轴系出现扭转振动时,一般情况下,船上不一定有振动的不适感,因此这种振动也是最容易被忽视的一种振动形式,一旦出现扭转振动被忽视,往往意味着会发生重大的事故。更应该注意的是,当发动机运转在主临界速度时,自由端的传动齿轮箱往往容易发生齿击或噪声大的现象,这时检查时会发现齿轮有点蚀或剥落等磨损现象,严重时会有断齿事故。有时在强共振的情况下,轴系中的某些位置只要数分钟运行就能自行发热,稍有疏忽,就可能造成断轴断桨的海损事故。 2 船舶柴油机因扭振而引起的断轴断桨的事故及分析 (1)广西海运局北海分局所属沿海货轮400吨桂海461、462、463,三条

华东理工---船体模态分析方法研究

船体模态分析方法研究 杨传武陈志坚 华中理工大学交通科学与工程学院

船体模态分析方法研究 The research of hull mode analysis 杨传武 陈志坚 (华中理工大学交通科学与工程学院) 摘 要:本文讨论了用杂交有限元模型进行船体模态分析的方法研究,并实际建立了某船的杂交有限元模型,对某船船体总振动进行了详细计算。计算结果表明:杂交有限元模型的总振动计算结果略小于迁移矩阵法。 关键词:杂交有限元模型 总振动 模态分析 Abstract : A method of analyzing hull mode by hybridizable finite element model has been discussed in this paper, the hybridizable finite element model of a ship has been established and its inherent frequencies of overall vibration has been computed particularly. The computing results shows that the result of overall vibration computed by hybridizable finite element model is appreciably less than that by matrix transfer method. Key Words: hybridizable finite element model ;overall vibration ;mode analysis, MSC.Nastran 一、引言 船体是一种复杂的弹性结构,其振动问题相当复杂,而船体总振动模态则是船舶总体振 动性态的一种主要反映,在设计的早期阶段就必须考虑。传统的研究方法是将船体作为变截面杆来研究,常用的有能量法、迁移矩阵法等。有限元法是近期发展起来的用于对般体分析设计的一种新型方法,目前已成为结构动力分析的最有力工具。在用有限元法计算船体总振动的模态(固有频率和固有振型)时,可以采用一维、二维、三维的模型。一维、二维模型具有模型简单,易于计算的特点,但对高阶振动不理想,并且不能反映局部的振动特性;三维模型具有接近真实结构,计算准确的特点,但工作量较大。因此,本文考虑采用三维杂交模型,即对我们所关心的局部采用三维模型,而其它部分采用一维梁模型组成三维杂交模型,这样既可以避免繁重的工作量,又能够对我们所关心的局部振动求得准确的结果。 二、模态计算的基本原理 根据结构动力学基本原理,三维框架结构的运动微分方程为: {F(t)}[K]{y}}y [C]{}y [M]{. ..=++

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

船舶机械振动及控制

船舶机械振动及控制 对船舶的机械有害振动的控制措施主要有防振和减振两个方面,防振是指在船舶设计阶段就考虑到振动的容许标准而采取降低振动的措施,减振则是指使营运船舶的振动下降到容许的标准。 防振措施和减振措施仅仅是对象的差异及处理的角度有些不同,其基本原理是一样的,即: (1)避免共振。改变结构的固有频率或激励频率防止共振的产生。 (2)减小激励力。进行动平衡或结构改型减小激励幅值。 (3)减小振动或激励力的传递。增加阻尼以防止吸收振动能量,装设减振装置以达到减小幅值的目的。 一柴油机振动控制 柴油机时引起船体振动的主要激励源之一,因此在船舶设计初期,选择什么样的机型是至关重要的。在满足功率等指标的情况下,应注意选择具有较小不平衡力和不平衡力矩的柴油机做主机。柴油机的缸数越多,其一般平衡性就越好。 (一)防止共振 选择主机时应配合螺旋桨考虑是否与船体发生低阶共振的可能性,尤其应避免在主机常用转速下的低阶共振问题。在设计阶段,先计算船体总振动的几个主要谐次的固有频率,以避免与柴油机和螺旋桨的各阶激励力共振。主机的选型应与减速齿轮箱、螺旋桨在一起考虑,在改变主机营运转速较困难时,也可改变变齿轮箱减速比或改变螺旋桨页数以达到改变激励频率的目的。 (二)减小激励力 对于存在外部不平衡力或者不平衡力矩柴油机,可以通过安装平衡补偿装置来减小振动激励力。这是一种普遍应用的防止有害振动的措施。 平衡补偿装置是使偏心质量以与主机激励频率相同的转速旋转,产生补偿力或者力矩以抵消柴油机的不平衡力,减少他们对振动的影响。按运转驱动方式可将平衡器分为

两大类:一是由电动机驱动,或称电动平衡器;二是由曲轴驱动直接附装在主机上。按被平衡激励的形式又可以分为一次力矩平衡器、二次力矩平衡器和组合平衡器。 电动平衡器一般安装在船体垂向振动振幅相当大的舵机底甲板上。 (三)减小振动传递 1,隔振器 对于不平衡的主机或辅机可以在机座下装设隔振器,以减小主机激励力对船体的传递。 所要求的减震器应该柔软些,这通常只有对高速柴油机才能实现。 目前国内常用的减震器主要有橡胶减震器和金属弹簧减震器。 另外,钢丝网隔减震器在工程上的应用也得以发展。 2 防振支撑 近代船用大型柴油机因采用长冲程和超长冲程,其机架横向振动是一个突出问题,成为船体激励源振动之一。当横向振动比较大时,可在主机上部与船舷左右侧间设横向防振支撑于船体连接。它通常能使机架横向振动减小50%以上,固有频率提高5%~50%。 目前常用的防振支撑主要有机械式、摩擦式、液压式三种。 (1)机械式支撑 机械式支撑使主机的刚性得到明显的增加,机架的固有频率上升,下降。但另一方面,机架的部分振动能量讲通过支撑传递至全体,有可能加剧船体的振动。(2)摩擦式支撑 摩擦式支撑的断面形状为U 型。 3)液压式支撑 它由一个充满氮气的蓄能器,一个装压力表的节流阀,哥哥固定在船体上装有差动活塞的减压缸及一根压杆组成。

船体主要构件结构图

船体结构图 船舶各部位名称如图所示。船的前端叫船首(stem);后端叫船尾(stern);船首两侧船壳板弯曲处叫首舷(bow);船尾两侧船壳板弯曲处叫尾舷(quarter);船两边叫船舷(ships side);船舷与船底交接的弯曲部叫舭部(bilge)。 连接船首和船尾的直线叫首尾线(fore and aft line center line,centre line)。首尾线把船体分为左右两半,从船尾向前看,在首尾线右边的叫右舷(starboard side);在首尾线左边的叫左舷(port side)。与首尾线中点相垂直的方向叫正横(abeam),在左舷的叫左正横;在右舷的叫右正横。 船体水平方向布置的钢板称为甲板,船体被甲板分为上下若干层。最上一层船首尾的统长甲板称上甲板(upper deck)。这层甲板如果所有开口都能封密并保证水密,则这层甲板又可称主甲板(main deck),在丈量时又称为量吨甲板。

少数远洋船舶在主甲板上还有一层贯通船首尾的上甲板,由于其开口不能保证水密,所以只能叫遮蔽甲板(shelter deck)。 主甲板把船分为上下两部分,在主甲板以上的部分统称为上层建筑;主甲板以下部分叫主船体。 在主甲板以下的各层统长甲板,从上到下依次叫二层甲板、三层甲板等等。在主甲板以上均为短段甲板,习惯上是按照该层甲板的舱室名称或用途来命名的。如驾驶台甲板(bridge deck)、救生艇甲板(life-boat deck)、等等。 在主船体内,根据需要用横向舱壁分隔成很多大小不同的舱室,这些舱室都按照各自的用途或所在部位而命名,如图1-18所示,从首到尾分别叫首尖舱、锚链舱、货舱、机舱、尾尖舱和压载舱等。在货舱中两层甲板之间所形成的舱间称甲板间舱(tween deck),也叫二层舱或二层柜。

对于船舶上建结构局部振动频率的分析

对于船舶上建结构局部振动频率的分析 摘要:当船舶在海上航行时,由于受到风浪波动的影响,船体结构的振动是不可避免的。船舶振动过大不但会对船上的船用设备产生影响,也会造成船体结构的损坏,甚至会危害船上人员的生命安全。所以在船舶的设计阶段,必须考虑船舶局部结构的振动频率问题,并采取办法对其加以控制。本文介绍了船舶振动的发展现状,具体从船舶振动的危害、现象和振源等方面,针对船舶上建结构的振动频率问题进行了简要分析。 关键词:船舶振动;局部振动;上建结构;上层建筑整体纵向振动固有频率在船舶结构的整体设计中,船舶局部振动是不可忽视的一个重要指标。近年随着我国海上船舶业的蓬勃发展,船舶的设计引入了更多的科技元素,并且功率越来越大。但是,船舶的上建结构因为有别于传统设计且刚度有所减弱,所以当船舶振动频率过大时,上建结构就会产生严重振动,威胁整个船体的安全航行。 一、船舶振动 虽然船舶在海上航行时,受波浪的影响较大。但是船舶振动的主要来源还是船舶中的各种机械。在船舶内部的机械、轴系、螺旋桨等部件运转的激励下,船舶的总体或者局部就会引起结构上的振动,这就是船舶振动。 (一)船舶振动的振源 船舶的结构是非常复杂的,它有许多的局部结构和船用设备,并且现在的船舶加装了许多高精密的电子仪器,对操作环境的要求又很高,所以船舶结构的振动首先对这些精密的船用设备来说,就是极大的威胁。实际上,船舶结构就是一种复杂的组合弹性体,如果按照振动的分布范围来说,船舶振动可以分为总体振动和局部振动;按照船体受力的角度讲,又可以分为自由振动和强迫振动。 因为在船体中机械众多,所以船舶是一个多振源系统,这种机械给船体带来的振动动力我们称之为“激励”。它们都是对船体有害的因素。船舶中主要的激励来源有螺旋桨、机械(包括主机、发电机、发动机、水泵、通风机等)和波浪。其中大部分的振动激励来自于螺旋桨。因为在船舶中,螺旋桨桨叶通过转动将水动力传承给桨轴,再由桨轴传给船体产生轴承力,另外螺旋桨也将水表面上的脉动水压力传送给船体,所以轴承力和水面的表面力是螺旋桨的主要激振来源,也就是桨激励的两种形式:轴频激励和叶频激励。影响螺旋桨系统激励的因素主要

船体振动

1简述什么是共振现象,什么是拍振现象。 当激振力的频率与系统的固有频率相等时,振幅不断增大而趋于无穷的现象称为共振。 当激振力的频率与系统的固有频率相当接近,但并不相等,又会发生另一种现象,即系统的振幅时而增大,时而减小,该现象称为拍振现象。 2简述什么是固有振型。 在某一特定的初始条件下,系统的质量在振动时同时达到最大位移和同时通过平衡位置,或者系统的所有移动部分作同相位同频率振动时,各质量的位移存在着特定的比例关系,它表示了振动的状态,这种状态称为系统振动的固有振形。 3简述什么是主坐标,什么是主振动。 在系统的每一个固有振动中只有一个独立变量,因而表示一个固有振动只需要一个独立坐标,描述固有振动的独立变量称为主坐标。 在某一特定的初始条件下,系统的质量在振动时同时达到最大位移和同时通过平衡位置,或者系统的所有移动部分作同相位同频率振动,这种振动即为主振动。 (1)写出横梁振动的质量正交条件,及并解释其物理意义。 物理意义:由于横梁振动的所有主振动是彼此独立的,因此一个主振动的惯性力对其他主振动的挠度不做功。 (2)简述弹性体势能形式的正交条件,并解释其物理意义。 物理意义:由于横梁振动的所有主振动是彼此独立的,因此一个主振动的弹性力对其他主振动的弹性变位上不做功。 (3)简述什么是动力放大系数,并分别给出单自由度系统有,无阻尼时动力放大系数公式。动力放大系数α是指动力所产生的最大动位移和将此动力的最大值视为静力时所产生的静位移的比值。无阻尼时,有阻尼时。 (4)船体垂向振动附连水的计算公式为: ;-水平振动附连水的计算公式为: 。 4通常将船体振动分为总振动和局部振动。 5降低船体振动的主要原则是:低频振动时要避免共振,高频时要减小激振力。 6附连水对船体振动影响主要分为重力,阻尼,惯性。 7船体总振动的计算方法主要包括能量法,迁移矩阵法,有限元法。较简便的方法是迁移矩阵法,较精确的方法是有限元法。 8对于船舶总体或局部结构的强迫振动,其大小除和激振力大小有关外,还和结构本身的刚度(弯曲和剪切刚度),质量和阻尼有关。其中以刚度影响最大。 9普通炸药水中爆炸对船具有一定程度的破坏作用的因素有水中冲击波,气泡,二次压力波。10螺旋桨引起的激振力主要包括轴频激振力和叶频激振力。机械部平衡引起的激振力主要包括机械静力不平衡,机械动力不平衡,水动力不平衡。 11螺旋桨叶频激扰力主要包括表面力和轴承力。影响脉动压力的主要因素是螺旋桨叶梢与艉壳板的间隙大小及螺旋桨的叶树。 12引起船体产生稳态强迫振动的主要原因是螺旋桨和主机运转时所引起的周期性的激振力。 13减小激振力的传递主要包括减小柴油机激振力的传递和减小螺旋桨激振力的传递,减小螺旋桨的激振力的传递主要包括采用弹性艉轴管,设置螺旋桨吸振穴。 14减小船体振动的结构措施主要包括上层建筑,艉部结构,机舱,其他局部结构等几方面。15单层板的声传输性质主要由隔板的刚度,阻尼,质量控制。 16船舶主要水下噪声源有机械噪声,螺旋桨噪声,水动力噪声。

船舶试验典型振动问题的控制方法

V ol 38No.Z1 Apr.2018 噪 声与振动控制NOISE AND VIBRATION CONTROL 第38卷第Z1期2018年4月 文章编号:1006-1355(2018)Z1-0278-05 船舶试验典型振动问题的控制方法 付 佳,徐智言,盛利贤 (上海外高桥造船有限公司,上海200137) 摘要:由于某超大型液化气船在船舶试航期间出现明显振动问题,为了保证船舶顺利交付,急需在有限时间内提出经济有效的振动控制方案。通过应用有限元软件对局部振动结构进行模态分析,将计算结果与激励频率范围进行对比,并结合试航试验结果,找出引起局部振动的主要激励源。采用避开结构固有频率的方法,结合修改时间与优化成本,最终提出经济有效的结构优化方案。通过再次试航试验,结果表明修改后的结构振动响应有显著减少,验证了优化方案的有效性。 关键词:振动与波;船舶振动;模态分析;振动控制;实船试验中图分类号:U661.44 文献标志码:A DOI 编码:10.3969/j.issn.1006-1355.2018.Z1.058 The Control Methods for the Typical Vibration Problems in Ship Trial FU Jia ,XU Zhiyan ,SHENG Lixian (Shanghai Waigaoqiao Shipbuilding Co.Ltd.,Shanghai 200137,China ) Abstract There are some vibration problems of the very large liquefied petroleum gas carrier during the sea trials.In order to ensure the delivery of ship,an economical and effective plan for vibration control is needed to be presented urgently.In this paper,the finite element method is used to analyze the mode of local https://www.360docs.net/doc/e414490262.html,paring the calculated results with the range of excitation frequency and the data of ship trial,the main excitation source that causes the local vibration are found.By using the method of avoiding the natural frequency of the structure as well as considering the modification time and optimal cost,the economical and effective plans are presented.In the second ship trial,the results show that the vibration response is reduced obviously after modification and the feasibility of this plan is verified. Keywords :vibration and wave;ship vibration;modal analysis;ship trial 船舶在运营过程中,会受到外界激励力的影响产生不同程度的振动,当振动过于剧烈时,会对船体结构、设备仪器以及船上人员的舒适性带来损伤。通常情况下,设计人员会从设计、建造、运营3个阶段对船体振动展开计算分析与控制工作。但是,由于影响船舶振动的因素繁多,一些振动问题在船舶设计与建造阶段未能发觉,当船舶进行试航试验时才被发现。在试航阶段解决船舶振动问题时,设计人员必须考虑优化成本与修改时间等影响因素,因此对在试航期间发现的振动问题提出振动控制方案 收稿日期:2018-03-15 作者简介:付佳(1989-),女,辽宁省葫芦岛市人,硕士,主要 研究方向为船舶结构设计、船舶振动噪声分析控制。 E-mail:just_fujia@https://www.360docs.net/doc/e414490262.html, 存在一定难度。 以某超大型液化气船为例,该船在试航期间发现驾驶室与首备件舱口角隅在主机转速为89r/min 附近时会发生明显振动现象,为了减小振动幅度,满足船东与市场要求,将对上述两部分开展减振处理。本文应用有限元计算软件对驾驶室与首备件舱口角隅进行振动模态与固有频率分析,所得计算结果与试航实测结果对比吻合,从而找出引起局部结构振动的主要原因。通过避开共振频率范围的方法,结合结构修改成本与时间,提出了一种经济有效的结构优化方案。最后通过再次实船试航试验证明优化方案的有效性,结果令船东较为满意。 目前国内文献更关注船舶在设计阶段的分析预报,而针对船舶试航期间发现振动问题并提出振动控制方案的文献较少。事实上,很多船舶在试航期 万方数据

船舶的噪声与振动控制

构破坏问题,而且船员在此种工作环境下工作容易出现身体健康问题,所以船舶噪声和振动控制处理非常重要,要求研究人员可以对船舶发出的噪声与振动进行研究,找出有效控制的办法,指导船舶设计人员可以在后续的设计工作中利用控制噪声与振动元件,合理设计船舶结构,从而确保设计出的船舶有着较长的使用寿命,船员可安全的在船舶上开展各项海上生产及作业工作。 1 振动源与噪声源分析 船舶结构中的主机、柴油机、主推进及主螺旋桨等装置是造成船舶振动源(噪声源)的主要因素,分析多因素与振动源(噪声源)之间的相关性,发现柴油机、螺旋桨装置为重要的影响因素,其中柴油机运转期间可以为船舶提供运行动力,会产生修复力矩、惯性力等振动(噪声)干扰力,而螺旋桨则可以在工作中产生轴承力、叶频干扰力等影响振动振幅大小的激振力。分析船舶发出的噪声可知主要包括三类:空气动力、电磁、机械噪声,划分依据为发出噪声的声源,还可以依照船舶上噪声发出的具体位置,将噪声划分为船体振动、结构激振、螺旋桨噪声等多类。研究船舶振动源、噪声源期间,需要对船舶作以局部结构模态分析,从而可让研究人员充分掌握船舶结构阻尼、振型及频率等参数,进而依据参数明确船舶出现振动及噪声期间,是否同时出现谐振现象,并且通过参数还可以对船舶频率、振型的正确性进行测试,从而可结合多项分析结果来预测船舶振动源位置[1]。 2 常用船舶振动与噪声模拟 以往开展船舶噪声与振动问题模拟的方式包括数学公式、模型计算、海上船舶试验等,研究人员依次利用上述方式进行问题模拟工作,能够在掌握噪声、振动发出位置的情况下良好的模拟噪声振动控制情况,但是分析常规方式的应模拟,该种模拟方式具体操作时可以依照下面方法完成模拟工作: 首先为有限元方法,该法属于求解方法,实际模拟应用中具有确定性特点,应用后能够准确预测低频振动环境,分析出的结构模态参数也非常精确。使用有限元法时,同时需要联合边界元法共同来模拟应用,从而可以联合模拟出结构振动情况、噪声强度。但是此种有限元模拟方法使用期间在高频问题求解时容易出现求解时间过长的问题,求解效率较低,而且应用期间高阶模态参数对于结构细节、未明确的结构参数有着较强的敏感度,易导致结构求解精度低的问题发生,此外通过有限元方法分析结构声振情况时,在结构振动(噪声导致)、噪声辐射(振动所致)等问题干扰之下,会影响耦合计算结果,所以上述几方面的应用问题需要引起船舶噪声及振动问题模拟求解人员的高度重视,对于有限元方法适用条件作以深入的调查了解,从而能够在适合有限元方法应用的低频振动噪声环境求解预示条件下合理利用该种求解方法[2]。其次为统计能量分析方法,该种方法主要应用在高频声振问题统计能量分析中,可从统计角度,对结构振动声场问题予以有效处理,统计精度与模态密集型呈正相关关系,若模态密集度高,那么统计精度将会显著提升,将该方法与有限元方法进行应用范围的对比发现此种方法的适用范围更广[3]。 3 船舶的噪声与振动控制 ■3.1 流程 分析船舶振动及噪声期间,首先需要对结构振动、声场进行局部分析,内容涉及船舶结构频率、振型,船舶结构敏感点响应值,可选择船舶上的甲板、驾驶室、机舱、控制室以及船员作为重点分析区域与对象,具体分析时需要先明确模型边界,之后对振动源和噪声源参数进行完整收集,从而 96 | 电子制作 2019年04月

轴系扭振计算例子

1 轴系基本数据 轴系布置数据 船舶类型海船 安装类型螺旋桨 中间轴连接方式键槽 减振器无 弹性联轴器无 齿轮箱无 总质量数12 主支质量数12 1级分支数0 2级分支数0 柴油机基本参数 型号7S60MC 制造厂/ 气缸数目7 冲程数 2 气缸型式直列 额定功率(kW) 13570 额定转速(r/min) 105 最低稳定转速(r/min) 30 缸径(mm) 600 活塞行程(mm) 2292 往复部件重量(kg) 5559 平均有效压力(MPa) 1.7 连杆中心距(mm) 2628 发火顺序1-7-2-5-4-3-6 机械效率0.83 第1气缸质量号 2 螺旋桨基本参数 型号Fault 制造厂Fault 直径(mm) 700 叶数 4 盘面比0.7 螺距比 1.1 转动惯量(kg.m^2) 230 螺旋桨所处单元号12

2 系统当量参数表 序号分支号惯量(Kgm^2) 刚度(MNm/rad) 外径(mm) 内径(mm) 传动比标识 1 0 209.0000 1329.787 2 672.0 115.0 1 2 0 10171.0000 1095.290 3 672.0 115.0 1 气缸#1 3 0 10171.0000 1135.0738 672.0 115.0 1 气缸#2 4 0 10171.0000 1054.8523 672.0 115.0 1 气缸#3 5 0 10171.0000 1055.9662 672.0 115.0 1 气缸#4 6 0 10171.0000 1133.7868 672.0 115.0 1 气缸#5 7 0 10171.0000 1165.5012 672.0 115.0 1 气缸#6 8 0 10171.0000 1538.4615 620.0 115.0 1 气缸#7 9 0 3901.0000 3115.2648 620.0 115.0 1 推力轴 10 0 5115.0000 60.3500 480.0 0.0 1 中间轴 11 0 613.9000 166.8335 590.0 0.0 1 螺旋桨轴 12 0 75197.0000 1.0000 100.0 0.0 1 螺旋桨

船舶的噪声与振动控制

船舶的噪声与振动控制 发表时间:2019-06-21T11:53:56.483Z 来源:《科学与技术》2019年第03期作者:张洪政[导读] 对船舶的噪声与振动控制进行了研究。 南通中远船务工程有限公司江苏省南通市 226001 摘要:船舶运行期间,需要借助于螺旋桨、主机、推进系统等动力机械与风机、泵等辅助机械装置才可产生运行动力正常行驶,但是这些机械工作时发出的噪声及振动较大,船体长时间受到这些装置工作的影响,有着较高的风险发生船体结构破坏问题,而且船员在此种工作环境下工作容易出现身体健康问题,所以船舶噪声和振动控制处理非常重要,本文对船舶的噪声与振动控制进行了研究。 关键词:船舶;噪声;振动控制 1振动源与噪声源分析 船舶结构中的主机、柴油机、主推进及主螺旋桨等装置是造成船舶振动源(噪声源)的主要因素,分析多因素与振动源(噪声源)之间的相关性,发现柴油机、螺旋桨装置为重要的影响因素,其中柴油机运转期间可以为船舶提供运行动力,会产生修复力矩、惯性力等振动(噪声)干扰力,而螺旋桨则可以在工作中产生轴承力、叶频干扰力等影响振动振幅大小的激振力。分析船舶发出的噪声可知主要包括三类:空气动力、电磁、机械噪声,划分依据为发出噪声的声源,还可以依照船舶上噪声发出的具体位置,将噪声划分为船体振动、结构激振、螺旋桨噪声等多类。研究船舶振动源、噪声源期间,需要对船舶作以局部结构模态分析,从而可让研究人员充分掌握船舶结构阻尼、振型及频率等参数,进而依据参数明确船舶出现振动及噪声期间,是否同时出现谐振现象,并且通过参数还可以对船舶频率、振型的正确性进行测试,从而可结合多项分析结果来预测船舶振动源位置。 2船舶的噪声与振动控制 2.1流程 分析船舶振动及噪声期间,首先需要对结构振动、声场进行局部分析,内容涉及船舶结构频率、振型,船舶结构敏感点响应值,可选择船舶上的甲板、驾驶室、机舱、控制室以及船员作为重点分析区域与对象,具体分析时需要先明确模型边界,之后对振动源和噪声源参数进行完整收集,从而可以参考参数构建仿真模型、划分网格、荷载施加、提取计算结果等流程的分析。其次进行结构振动及声场整体分析,即研究人员可以先整理分析局部分析结构,之后便可从整个船舶角度出发,进行整船的声场计算。同时,在对船舶噪声与振动进行控制分析时,需要加强电子技术使用,并通过对噪声与振动控制电子元件的合理设置,获取相应的信息,进而在计算机三维空间中进行有效分析,为船舶噪声与振动问题的科学控制提供参考信息,优化船舶应用过程中的安全性能。除此之外,为了实现对船舶低频声能的有效吸收,则需要考虑共振吸声结构的合理设置,进而为船舶性能的不断优化提供支持,增强其噪声与振动控制效果。 2.2船舶海上试验 对于船舶作以海上航行试验,可以具体分析得出船舶噪声及振动运动情况,以便找出可进行噪声振动控制设计的主要方向。试验期间主要完成两个方面的测试工作,包括船舶局部振动试验、船舱内部室内空气噪声试验,试验期间需要严格依照“DNVRulesforclassificationofships”标准、IMOResolutionA.468XⅡ标准(评价空气噪声)、IS06954标准(评价船体局部振动)进行各个环节的试验;还需要准备精密声级计、动态数据分析仪进行数据分析,辅助试验完成。试验期间主要分为Transit、DP两种工况,便可得出局部振动数据、船舱内空气噪声参数。研究期间选择广州市的某一港口停靠船舶为研究对象,将其驶向海上后可开始试验,该艘船长度为150米,型深与型宽分别为13米、25米,结构组成中的螺旋桨、主机、辅机为发出噪声与振动的振动源(噪声源),每个装置的数量分别为2台,试验过程中船舶的吃水深度分别为5.4米(船尾)、5.1米(船首),试验地点选择在甲板上的三个房间、控制室、餐厅。试验使用的模型为SEA模型,该模型属于当前模拟船舶噪声及振动问题的常用模型,应用时可以借助于边界元分析、有限元方法及统计能量分析三种方法共同进行船舶问题的试验模拟,重点分析输入功率、模态密度及内损耗因子等内容。同时需要依据试验模型分析船舶载荷,由于模型提供的载荷方法较多,结合本文研究船舶的具体情况,选择定义功率、定义约束法进行分析,借助于以上方法可以对船舶施加载荷,进而通过激励频率的增加,可预测出船舶噪声振动发生情况。得出试验结果后,分析船体局部振动试验结果可以了解到在不同工况下,在轻微振动区域内进行各个测点的数据测试工作,得出的局部振动参数结果较好,而船舱室内空气噪声,在处于Transit工况下,测得数据相差不大,可显示当前舱内空气噪声的实际数据,分析这些数据表示在该工况下舱内空气噪声较小,在另一个工况下,发现在工况右向状态下,对比不同测试点发出的声音分贝,可知存在部分位置的噪声超过60分贝的情况,主要集中在船舶甲板的房间、餐厅位置,分析这些地方分贝过高的主要原因,可知是由于船舶航行期间,海水流速因素、甲板结构设计因素等所致,因此控制船舶噪声振动期间,可以从水流情况、甲板设计方向作以有效设计,确保后续设计的船舶可以规避相关影响因素的干扰,降低航行期间发出的噪声大小与振动幅度,以此给船舶上的船员构建一个良好的工作环境。具体设计时可结合目前一些常用的船舶隔噪声、隔振设计方法,在船体结构之上进行地板弹性、壁板三者的连接设计,从而可让船体在工作时对于振动、噪声情况进行合理降低控制,避免振动噪声过大情况出现;还可对导致噪声出现的船舶舱内缝隙与孔洞、隔声材料吸声量差、隔声构件阻尼及质量不达标、隔声构件密封性能不良等影响因素予以综合考量,从而选择质量性能优良的隔声构件进行船体室内装修,便可保证船舶行驶过程中出现的噪声振动较小,除了常规应用的隔声构件外,还可采用减振效果较好的阻尼合金材料制成的腹板材料、附加阻尼材料进行船舶减振设计。本文研究数据受到一些因素影响(参数测量期间仪器位置移动、材料参数选择不当、模型过于简化、载荷施加误差、未对可能造成船舶噪声与振动的舾装部件进行试验分析等),导致数据存在一定的误差,需要研究人员在后续的海上试验研究中合理规避相关因素,从而保证船舶噪声与振动问题被有效的控制。 3结束语 船舶噪声和振动对于船体结构质量、船员身体健康有着严重的不良影响,由于该问题的发生与船舶结构设计有紧密联系,所以要求设计人员对于船舶发出噪声、振动的具体情况有详细了解,继而可以在后续的船舶设计工作中从噪声与振动发生的原因入手,有效做好船舶结构设计工作,确保优化设计建造而成的船舶能够为我国船舶事业、海洋事业的长远稳健发展提供更多帮助。 参考文献 [1]李克用.船舶的振动与噪音的理论分析[J].黑龙江科技信息,2011(28):59.

相关文档
最新文档