(课件)2.1认识无理数
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习务
通过拼图活动,感受有理数又不够 用了
能判断一个数是否为有理数,是否 为无理数 能比较无理数的大小
把两个边长为1的小正方形通过 剪、拼,设法得到一个大正方形
1 1
1
1
1 1
是整数吗?
是分数吗?
数怎么又不够用了!
1
1
正方形的边长是多少?
=1.41421356…
它是一个无限不循环小数
1、把下列各数表示成小数,你发 现什么?
4 5 8 2 3, , , , . 5 9 45 11
无限不循环小数叫做
无理数
新知归纳
无限不循环小数 特征 不能化成分数 具有特殊意义的数:如π (1)无理数 具有特殊结构的数:如0.1010 类型010001„ (相邻两个1之间0的个数逐
概念:无限不循环小数称为无理数 次加1)
新知归纳
(2)有理数和无理数的区别:
有限小数 有理数 无限循环小数 小数 无限不循环小数——无理数
例1、下列各数中,哪些是有理数?
哪些是无理数?
. . 4 3.14, ,0. 5 7, 3
0.1010001000001
(相邻两个1之间的0的个数逐次加2个)
2.1 认识无理数
复习引入
整数 分数 统称为有理数. 1.有理数的概念:________和________ 无限循环小数表示,反 有限小数 或_______________ 2.有理数总可以用___________ 有限小数 过来,任何_______ _或_______________ 无限循环小数 也都是有理数.
他这一死,使得这类数的计算推迟 了500多年,给数学的发展造成了不可 弥补的损失。
C
b
A 1 1
1
B
b是有理数吗?
用16个边长为1的小正方形拼成 了如图的网格,任意连接两个格点, 就得到一条线段, 试分别画出一条长度 是有理数的 线段和一条长度不是有理数的线 段.
1、估计面积为5的正方形的边长b 的值(结果精确到十分位)。 2、结果精确到百分位呢?
然而,第一个发现这样的数的人 却被抛进大海,你想知道这其中的曲 折离奇吗?这得追溯到 2500 年前,有 个叫毕达哥拉斯的人,他是一个伟大 的数学家,他创立了毕达哥拉斯学派, 这是一个非常神秘的学派,他们以领 袖毕达哥拉斯为核心,认为毕达哥拉 斯是至高无尚的,他所说的一切都是 真理。 毕达哥拉斯( Pythagoras) 认为“宇 宙间的一切现象都能归结为整数或整数 之比,即都可用有理数来描述。
探究问题二 无理数近似值的确定
例2 无理数像一篇读不完的长诗,既不循环,也不
枯竭,无穷无尽,数学家称之为一种特殊的
数.设面积为10π的圆的半径为x,回答下列问题:
(1)x是有理数吗?请说明理由; (2)请估计x的整数部分是多少; (3)将x精确到十分位是多少?
2.1 认识无理数
[归纳总结] 无理数的估算方法——逐次逼近 法. 用“逐次逼近法”来解决一个数学问题时,
首先从一个与该问题的实质内容有着本质联系
的较大范围开始进行解决,再逐步缩小范围,
逐步逼近,以致最后达到问题所要求的解.在
解决比较困难的数学问题时,“逐次逼近法” 可以起到化难为易、化繁为简的作用.
你今天学到了什么?
作业:
全品相应课时
但后来,这学派的一位年轻成员 希伯索斯(Hippasus) 发现边长为1的正 方形的对角线的长不能用有理数来表 示,这就动摇了毕达哥拉斯学派的信 条,引起了信徒们的恐慌,他们试图 封锁这一发现,然而希伯索斯偷偷将 这一发现传播出去,这为他招来了杀 身之祸,在他逃回家的路上,遭到毕 氏成员的围捕,被投入大海。