复合泊松过程.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由题设条件易证{X(t),t≥0}具有独立增量性。
定理2:
设 N (t)
X (t) Yk , t 0
是复合泊松过程,则
k 1
(1)X(t)的矩母函数
X (t) (u)
et[Y
( u )1]
其中,是事件的到达率,Y (u) 是随机
变量 Yi 的矩母函数; (2)若 E(Y12 ) ,则
E[ X (t)] tE[Y1], D[ X (t)] tE[Y12 ]
第五节 复合泊松(Poisson)过程
本节学习的主要内容
一、复合泊松过程的定义 二、复合泊松过程的性质 三、复合泊松过程的应用
一、复合泊松过程的定义
定义:设{N(t),t0}是强度的泊松过程, {Yk ,k=1,2,}是一族独立同分布随机变量, 且与{N(t),t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称{X(t),t0}为复合泊松过程。
条件:
(1)存在一个泊松过程和一个随机变量序列; (2)随机变量序列是相互独立,且服从同一分布; (3)随机变量序列与泊松过程是相互独立。
例1:假设N(t)是在时间(0,t]内来到某商
店的顾客数,每个顾客购买商品的概率
为p,且与其它顾客是否购买商品无关。
问:在时间(0,t]内购买商品的顾客数是
否复合泊松过程?
二、复合泊松过程的性质
定理1: N (t)
设 X (t) Yk , t 0 是复合泊松过程,则 k 1
{X(t),t0}是独立增量过程。
证明: 令 0 t0 t1 t2 tm,则
N (tk )
X (tk ) X (tk1)
Yi , k 1,2,, m
i N (tk1 )1
过程,每次索赔的金额是相互独立且服从 同一分布的随机变量序列,并且索赔的金 额与发生的时刻无关。若每次赔付金额是 均值为30000元的正态分布,求:一年中 保险公司的平均赔付金额为多少?
全数学期望公式: E[X]=E[E()
N (t )
Yi
,
t
0}
是复合泊松过程,已
i 1
知 5,Yi 服从指数分布。
求:E[X(t)],D[X(t)]与矩母函数 X (t)(u) ?
例2:假设在时间(0,t]内保险公司接到索赔 的次数N(t)是以平均2次/月的速率的泊松