光纤激光器的原理及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤激光器的原理及应用
引言
机器人激光切割成套设备是基于机器人机构,利用光纤激光器产生的大功率高能密度定向激光,实现汽车用钢板等板材自动切割的成套生产设备。由于光纤激光采用光纤传输,可将光束传送到远距离加工点,并且光纤自身可自由变换形状,在机器手的夹持下,其运动由机器手的运动决定,因此能匹配自由轨迹加工,完成平面曲线、空间的多组直线、异形曲线等特殊轨迹的激光切割。激光加工在工业中所占的比重已经成为衡量一个国家工业加工水平高低的重要标志。切割、焊接是汽车白车身制造中的重要生产工艺,尤其在新车型开发和小批量定制中,采用先进的激光切割(代替部分修边—冲孔工序的模具)可以大大提高开发效率、降低开发成本,从而使得激光切割的应用倍受青睐。
1.影响光纤激光器能量传输的主要因素
由于激光在光纤中不可避免地会产生吸收、散射及透射等现象,所以导致光纤传输激光功率随光纤长度的增加而衰减。通常用dB数来表示衰减度,dB值用下式计算
式中,是衰减前的激光功率;P是衰减后的激光功率。对于由传输长度引起的衰减来说,表示光纤中x=0处的激光功率,P是激光从x=0传播到x=x处的功
率。由式(1)可知,P(x)和的关系满足
式中,x的单位为km,表示每千米衰减的dB数。从式(1)可以看出,当耦合光纤足够长时,即使光纤的值较小,光纤长度引起的衰减也不可忽视。对于激光能量分布按Gauss分布的光纤,其传输的激光功率密度(或称激光强度)I可认为与纤芯半径a的平方成反比,即
因此,若保持光纤传输的激光功率不变,减小光纤芯径即减小传输激光能量的光纤纤芯的横截面面积,则光纤传输的激光功率密度将增加。
光纤耦合引起的衰减不容忽视。例如在激光二极管点火中,激光二极管与光纤的耦合,光纤与光纤之间的耦合,光纤与点火器之间的耦合都存在能量损失。
激光的热效应也是不容忽视的。在激光点火中,通常情况下,正是利用激光的热效应来引燃、引爆含能材料。因此,光纤包层及封装材料的传热系数越大,热散失越多,光纤最终输出的能量损失越大。
图1是双包层光纤截面结构及其工作原理图。从图1(a)双包层光纤的截面结构町见,光纤包括四个部分:纤芯、内包层、外包层、保护层。用
分别表示双包层光纤的纤芯、内包层、外包层和保护层的折射率,则折射率应满足:。
图1 双包层光纤截面结构及其工作原理
2.光纤激光器的优点
光纤激光器的优点见表1。
表1 光纤激光器与其它激光器的比较
3.柔性加工系统
机器人光纤激光加工系统组成如图2所示,主要是由光纤激光器、机器人(本体和控制柜)、水冷系统、光束传输系统、激光头和工件装夹系统组成。
图2 机器人光纤激光加工系统
该系统中激光器采用了IPG公司的YLS-2000型光纤激光器,最大功率可达2000W,光纤芯径为150μm,喷嘴直径为1.5mm。机器人为瑞士ABB公司生产的IRB4400型六轴联动高精度机器人,装有安全开关。借助于示教盒上的安全开关,示教过程中脱手或握力过大都会关掉伺服,使机器人停止,因此可安全地操作。激光柔性加工系统一般包括控制用计算机或者PLC、激光器、机械运动装置或机器人、光纤传送和光束变换装置及其它辅助设施。这是一种相对设备不多,但对其精度、实时性、安全性、集成度要求较高的精密控制系统,系统的组成如图3所示。为避免使用造价昂贵的控制硬件,激光器的控制采用西门子S7—300 PLC 作为控制终端,机器人采取串口通信方式。
图3 光纤激光切割系统的组成
4机器人编程方式
通常,机器人编程方式可分为示教再现编程和离线编程。目前,在国内外生产中应用的机器人系统大多为示教再现型。ABB六轴联动机器人的编程语言为RAPID语言,编程方式有两种:即示教再现编程(teaching—playback programming)和离线编程(off-line programming)。示教再现型机器人在实际生产应用中存在的主要技术问题有:机器人的在线示教编程过程繁琐、效率低;示教的精度完全靠示教者的经验目测决定,对于复杂路径难以取得令人满意的示教效果;对于一些需要根据外部信息进行实时决策的应用无能为力。图4为示教再现编程的流程图。
图4 不教再现编程的流程
离线编程
机器人离线编程系统是利用计算机图形学的成果,建立起机器人及其工作环境的几何模型,再利用一些规划算法,通过对图形的控制和操作,在离线的情况下进行轨迹规划。通过对编程结果进行三维图形动画仿真,以检验编程的正确性,
最后将生成的代码传到机器人控制柜,以控制机器人运动,完成给定任务。示教再现编程与离线编程的比较见表2。
5.结论
随着全球经济一体化进程的发展,汽车市场的竞争愈加激烈,我国的汽车工业将面临更为严峻的挑战。车身的设计与制造技术必将成为世界汽车工业激烈竞争的主战场。而车身制造中激光切割、焊接的应用,必将为车身制造业带来重大变革,为企业带来巨大的效益,同时大大提高和增强企业的竞争力。国内外先进汽车生产企业的经验表明,激光加工技术的推广,将显著提高我国汽车工业产品的质量水平以及在国际中的竞争力。
光信0802班王慧