基于数字下变频的低通滤波器设计

基于数字下变频的低通滤波器设计
基于数字下变频的低通滤波器设计

基于数字下变频的低通滤波器设计

周遐1金瑞2钟思佳3李瑞锋

4(昆明冶金高等专科学校自动化与电力学院云南昆明650033)

摘要:本文在了解数字下变频技术的基础上,对数字下变频器中的低通滤波器的结构进行了研究,然后先用MATLAB 软件根据对滤波器结构的分析进行了具体的设计,以得到VHDL 程序语言设计的相关参数和对滤波器性能的分析,最后对结果进行分析和总结。

关键词:数字低通滤波器;MATLAB ;FIR

Based on DDC low pass filter design

Zhou Xia Jin Rui Zhong Si-jia LI rui-feng

(The faculty of Automation and Electric power,kunming Metallurgy college,Kunming,

650033,China )

Abstract:This article in understood the DDC technology in the foundation,has conducted the research to in the DDC low pass filter structure,then used the MATLAB software basis to carry on the concrete design first to the filter structure analysis,by obtained the VHDL program language design related parameter and to the filter performance analysis,finally carried on the analysis and the summary to the result.

Key words :digital lowpass filter ;MATLAB ;FIR

0引言

现行的软件无线电实现方案大多采用数字变频技术,通过对数字信号的采样率进行变换,以缓解DSP 处理速度的压力。数字下变频,就是通过混频、多级抽取滤波、重采样等步骤,降低射频带通采样信号或中频采样信号的采样频率,从而使DSP 进行实时信号处理。1

数字下变频与数字低通滤波器1.1数字下变频技术

数字下变频技术是数字接收机的核心技术之一,它包括数字混频正交变换、抽取及高效率数字滤波等。其中数字混频正交变换部分完成频谱搬移工作,抽取改变采样率,而高效数字滤波保证信号抽取前后的抗混叠问题。从工作原理讲,数字下变频与模拟下变频是一样的,就是输入信号与一个本地振荡信号混频(相乘),再通过低通滤波器滤除混频过程产生的带外信号。

图一:数字下变频基本结构

目前有很多实现DDC 功能的专用器件已经商品化,如HSP50214B ,AD6620AS 等等,1周遐(1959~),男,1982年毕业于云南大学,高级工程师副教授研究方向:电子技术、通信技术NCO 抽取滤波抽取滤波cos sin

I

Q

数字

中频

它们都包括一些共同的信号处理模块:正交混频器(数控振荡器(NCO)和乘法器)、积分梳状滤波器(CIC)、半带滤波器(HBF)和可编程系数抽取滤波器(FIR)等。它们一般都具有多种输入处理模式,是高速ADC和一般目的的DSP或FPGA器件之间的桥梁。

1.2数字下变频中的数字低通滤波器的实现

数字低通滤波器在此处的作用是滤除带外信号,提取感兴趣的信号,以及对采样速率进行转换,降低采样速率,以利于后续信号处理。

采样速率进行抽取,降低速率,可以用单级的结构实现。采用单级设计的抽取器方法简单,结构直观,但资源比较浪费。在变换抽样率的系统中,采用多级实现方法有重要的现实意义,它的优点主要体现在:

(1)实现抽样率变换系统时可显著地降低运算量;

(2)降低系统中的存储量;

(3)简化滤波器设计问题,即允许每一级归一化的过渡带比较宽;

(4)实现数字滤波器时可减少有限字长效应(即舍入噪声和系数灵敏度)。

数字下变频(DDC)中的低通滤波器(LPF)是由多级抽取滤波器组实现的。信号的同相分量和正交分量再分别经由积分梳状滤波器(CIC)、半带滤波器(HB)和有限长单位脉冲响应(FIR)滤波器构成的多级抽取滤波器组进行滤波和降采样处理,再将产生的正交基带信号I(n)、Q(n)送到通用DSP处理器,进行信号识别、解调等基带信号处理。

一般根据阻带衰减要求确定积分梳妆滤波器(CIC)级联级数L,但是级联积分梳状滤波器将引起有用信号通带的单调下降,随着级联级数L的增加通带的下降也将增加,为此CIC后面级联第二个低通抽取滤波器,一般采用半带抽取滤波器(HBF)和普通FIR滤波器,FIR滤波器对CIC抽取滤波器有用信号通带的下降进行补偿且具有较陡直的滚降特性。当通带误差容限要求较高时,为补偿CIC滤波器的通带下降,FIR滤波器的阶数较高。

2MATLAB中的窗函数法设计

2.1设计原理

窗口设计法是根据给定的指标所要求的频响H d(e jw),求出相应的序列h d(n)。其长度一般为无限长,为了满足FIR滤波器设计的要求,得到一个有限长度的脉冲响应,可用一定形状的窗口函数截取成有限长的h(n),以此来逼近理想的h d(n),从而使频率响应H d(e jw)也逼近理想的频率响应H d(e jw)。

频率采样法是指在脉冲响应h(n)为有限长度的条件下,根据频率取样定理,对所要求的频率响应进行取样,从样点中恢复原来的频率特性,达到设计滤波器的目的。

2.2设计方法

窗函数设计技术是FIR滤波器设计的主要方法之一,由于其运算简便,物理意义直观,已成为工程实际中应用最广泛的方法。

在设计一个滤波器之前,必须首先确定一些技术指标。这些技术指标需要根据工程实际的需要来制定。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般确定为频域中幅度和相位响应。幅度指标主要以两种方式给出,第一种是绝对指标,它提供对幅度响应函数的要求,这些指标一般应用于FIR滤波器的设计;第二种指标是相对指标,它以分贝值的形式给出要求,在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中具有线性相位。运用相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;

③长度为M的滤波器(阶数为M-1),它的计算量为M/2数量级。本文中FIR滤波器的设计就是着重于线性相位滤波器的设计。

为了建立一个具有线性相位和稳定的非递归特性的有限脉冲响应滤波器即FIR滤波器,

要考虑两个方面:一是使用有限长的单位取样响应来逼近理想低通,二是单位取样响应对(N 一1)/2对称,从而保证线性相位。

2

编程实现2.1设计参数计算

(1)确定滤波器的设计指标:

通带截止频率π2.0=p w ,阻带截止频率π4.0=s w ,阻带衰减dB A s 60=,通带等波纹dB

R P 01.0=(2)设计分析:

由以上可得过渡带宽度p s w w width tr -=_,理想低通滤波器的截止频率()p s c w w w +=2

1,由dB A s 50=,可以用Hamming 窗来实现,则阶数1_/6.6+=width tr N π,

利用MATLAB 编程时,先计算N 、tr-width 、h d (n)和h(n),并利用MATLAB 提供的相关工具计算该低通滤波器的幅度特性值,最终显示Hamming 窗频谱、实际单位取样响应频谱、理想单位取样响应频谱和该FIR 滤波器幅度特性曲线。

2.2利用MATLAB 编程设计

实现FIR 滤波器的主程序(部分):

%lowpass design

wp=0.2*pi;ws=0.4*pi;%给出通带和阻带的截止频率

tr_width=ws-wp %过度带宽度

M=ceil(6.6*pi/tr_width)+1%计算单位取样响应列长,使其偶对称

n=[0:1:M-1];

wc=(ws+wp)/2%计算理想低通截止频率

hd=ideal_lp(wc,M);%计算理想低通单位取样响应

w_ham=(hamming(M))';

h=hd.*w_ham;%应用窗函数加权后的有限长单位取样响应序列

[db,mag,pha,grd,w]=freqz_m(h,[1]);%计算幅值响应、相位响应和群延迟响应

delta_w=2*pi/1000;

Rp=-(min(db(1:1:wp/delta_w+1)))

As=-round(max(db(ws/delta_w+1:1:501)))

%plots

figure(1)

subplot(2,2,1);stem(n,hd);title('Ideal Impulse Response')

axis([0M-1-0.10.3]);ylabel('hd(n)')%显示理想单位取样响应频谱

subplot(2,2,2);stem(n,w_ham);title('Hamming Window')%显示Hamming 窗频谱

axis([0M-101.1]);ylabel('w(n)')

subplot(2,2,3);stem(n,h);title('Actual Impulse Response')

axis([0M-1-0.10.3]);ylabel('h(n)')%显示实际单位取样响应频谱

subplot(2,2,4);plot(w/pi,db);title('Magnitude Response in dB');grid

axis([01-10010]);ylabel('Decibels')%显示FIR滤波器幅度特性曲线

运行后,有关参数是:tr_width=0.6283,M=34,wc=0.9425,Rp=0.0477,

3实验结果及讨论

As=52符合设计指标,其相应得运行后的图形如下:

图2设计所得滤波器

为了检验这个设计出来的滤波器的性能,可以加一个测试信号,以测试其滤波性能。

测试信号的程序如下:

N=0:99;%输入信号时

x=0.6*sin(0.1*pi*N)+0.3*sin(0.6*pi*N);a=length(x);

y=conv(x,h);%输出信号

T=length(y);

t=[0:T-1];

figure;

subplot(1,2,2);plot(t,y);title('out');

axis([0T-1-11]);

xlabel('n');ylabel('y(n)');

subplot(1,2,1);plot(N,x);title('in');

axis([0a-11]);

xlabel('n');ylabel('x(n)');

加入的信号是一个低频信号与一个高频信号的叠加,如下图的左边那个图,滤波出来的图示为右边的,可以看出高频信号被滤掉,剩下低频信号。

图3滤波效果测试

相同的窗函数下,N值越大,主瓣越窄,过度带越窄,阻带的波动频率加快,但阻带的最小衰减没有改变,即最大的副瓣相对于主瓣的值没有改变。虽然提高N值没有加大阻带衰减,但却使过度带变窄了。利用窗函数设计FIR滤波器的具有实际指导意义的原则:一是选择主瓣较宽的窗函数,从而加大阻带的衰减,保证通带的平稳,二是在保证阻带最小衰减指标的情况下,适当增加列长N值,使过度带窄一些。但N值的变化同时影响过度带和主瓣的变宽或变窄,另外选择主瓣较宽的窗函数时(同等N值下),其过度带就宽一些了,可见这两个设计原则是无法同时满足的。因此设计FIR滤波器时,应根据技术指标,通过多次试验,找到合适的窗函数和N值。

4结束语

基于数字下变频器(DDC)的低通滤波器设计,其理论广,不单单是对一个数字滤波器而言,而是结合了软件无线电和数字下变频技术的原理,这样不仅对数字滤波器的设计有了一个基本的掌握,而且滤波器的设计更有目的性和实用性,以及推广性,另外,数字下变频器(DDC)是现代通信结构中的一个重要部件,这样的设计具有实际的延伸性,以后可以对软件无线电技术和数字下变频技术进行更深入的研究,并且可以用FPGA技术对其进行实现,这是本文的重要意义。

参考文献

[1]楼顺天,李博菡。基于MATLAB的系统分析与设计——信号处理[M]西安电子科技大学出版社,1998

[2]杨小牛,楼才义。徐建良.著,软件无线电原理与应用[M]电子工业出版社,2001。

[3]谭会生,张昌凡。EDA技术及应用[M]西安电子科技大学出版社,2001.9

[4]柳春锋。窗函数法设计FIR数字滤波器的软件实现及设计原则[D]黑龙江;齐齐哈尔大学2001

[5]于慧敏刘圆圆。新型数字下变频器的设计[J].浙江大学学报:工学版,2004,38(4):437-442.

[6]王华。基于低通滤波器的数字下变频性能[J].舰船电子对抗:2008,31(2).

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计 学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

切比雪夫1型数字低通滤波器

目录 1. 数字滤波器的设计任务及要求 (2) 2. 数字滤波器的设计及仿真 (2) 2.1数字滤波器的设计 (3) 2.2数字滤波器的性能分析 (3) 3. 数字滤波器的实现结构对其性能影响的分析 (8) 3.1数字滤波器的实现结构一及其幅频响应 (10) 3.2数字滤波器的实现结构二及其幅频响应 (12) 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (13) 4.1数字滤波器的实现结构一参数字长及幅频响应特性变化 4.2数字滤波器的实现结构二参数字长及幅频响应特性变化 4.3 数字滤波器的参数字长对其性能影响的小结 (16) 5. 结论及体会 (16) 5.1 滤波器设计、分析结论 (16) 5.2 我的体会 (16) 5.3 展望 (16)

1.数字滤波器的设计任务及要求 1. 设计说明 每位同学抽签得到一个四位数,由该四位数索引下表确定待设计数字滤波器的类型及其设计方法,然后用指定的设计方法完成滤波器设计。 要求:滤波器的设计指标: 低通: (1)通带截止频率πrad (id) pc 32 ln = ω (2)过渡带宽度πrad ) (i d 160 10log tz ≤?ω (3)滚降dB αroll 60= 其中,i d — 抽签得到那个四位数(学号的最末四位数),本设计中i d =0201。 2. 滤波器的初始设计通过手工计算完成; 3. 在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器 结构进行分析); 4. 在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响; 5. 以上各项要有理论分析和推导、原程序以及表示计算结果的图表; 6. 课程设计结束时提交设计说明书。 2.数字滤波器的设计及仿真 2.1数字滤波器(编号0201)的设计 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。 本次课程设计使用MATLAB 信号处理箱和运用切比雪夫法设计数字滤波器,将手工计算一个切比雪夫I 型的IIR 的低通模拟滤波器的系统函数,并在MATLAB 的FDATool 设计工具分析其性能指标。

一种新型直接抽取算法的数字下变频设计

一种新型直接抽取算法的数字下变频设计 【摘要】为了简化卫星导航接收机框架,提出一种基于数字信号抽取的下变频方法。通过分离和累计法,人们发现了一种具有高频率数字载波信号的直接下变频方法。这种方法不仅具有结构简单、速度高和计算简单的特点,还能够很好的保持导航电文和多普勒信息,但这种方法有可能会使S/N信号和接收机的灵敏度降低:分析和仿真结果显示,它对接收机的定位灵敏度没有任何的影响。 【关键词】数字下变频;抽取算法;BPSK 1.引言 卫星导航接收机通常采用超外差的体系结构,在模拟的超外差接收机前端,许多的数字下变频是通过使用混频器和本地振荡器接收IF信号。低通滤波器消除了高频率分量,然后便可以得到不同频率的下变频信号,与低IF模式和零IF 模式相比,它具有高增益、高抑制和无本地振荡泄漏的特点,但是它的结构复杂和功率损耗较高[2]。 数字接收器具有高集成度、低功耗和低成本的特点,因此,它是无线电接收器的发展趋势[3]。数字下变频方法能够通过数字调音台、CIC滤波器或者重采样方法把一个高频率信号转变成低频率信号[4-5]。在本文中,抽取算法和提取信号是为了得到BPSK调制信号的下变频,与CORDIC方法相比,数字下变频方法只需要添加点操作就可以节省许多的时间和CPU空间。在处理导航数据或CDMA数据时,除了采样IF算法外,还需要重采样和复杂的数字算法。 2.抽取算法的原理 假设在模数转换之前,信号的频率为,抽样频率是。对于BPSK调制的信号,载波频率和振幅是不变的。经过A/D转换后,信号为是一个行向量,向量的位数等于A/D转换器的位数。无相位转换的载波抽样信号有如下关系: 如果相位在周期发生转换,并且是在和周期之间发生,由于相位变化是,最后的抽样值不如前个抽样值,。如果>,在抽取的过程中相变不会发生,那么便会在下个周期发生。因此,在抽取期发生的相变将提前或推迟以适应周期的开始或结束,从而导致部分代码相位误差。 3.灵敏度和准确度的影响 抽取和量化将会造成信号信息的丢失,此量化误差是依赖于量化比特数和阀值。通过选择合适的阀值可以使量化的损失减少,通常情况下,实验中的量化是0.55dB[7]。抽取值可以改变相变的位置。如果累计的最大数目是,它可以使相位的过渡时间提前或滞后正确点的,是抽样周期。相变错误也影响相关积分结果,这会使接收器的灵敏度降低。考虑了多普勒频移,相变误差均匀分布的区域是,

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

数字信号处理-低通滤波器设计实验

实验报告 课程名称:数字信号处理 实验名称:低通滤波器设计实验 院(系): 专业班级: 姓名: 学号: 指导教师: 一、实验目的: 掌握IIR数字低通滤波器的设计方法。 二、实验原理: 2.1设计巴特沃斯IIR滤波器 在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。 Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。butter函数的用法为:

[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 2.2契比雪夫I型IIR滤波器。 在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。 cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。cheblord函数的用法为: [n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 三、实验要求: 利用Matlab设计一个数字低通滤波器,指标要求如下:

脉冲响应不变法设计数字低通滤波器

燕山大学 课程设计说明书 题目:脉冲响应不变法设计数字低通滤波器 学院(系):电气工程学院 年级专业:09级精密仪器及机械2班 学号: 0901******** 学生姓名:范程灏 指导教师:刘永红 教师职称:讲师

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师: 学号学生姓名(专业)班级设计题目7、脉冲响应不变法设计数字低通滤波器 设 计技术参数给定技术指标为:Hz f p 100 =,Hz f s 300 =,dB p 3 = α,dB s 20 = α,采样频率Hz F s 1000 =。 设 计 要 求 设计Butterworth低通滤波器,用脉冲响应不变法转换成数字滤波器。 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字

目录 第1章前言 (3) 第2章数字信号处理部分基础知识 (3) 第3章 MATLAB部分基础知识 (8) 3.1 MATLAB介绍 (8) 3.2 MATLAB命令介绍 (8) 第4章仿真过程及仿真图 (9) 4.1 仿真程序 (9) 4.2 仿真波形 (10) 第5章设计结论 (10) 第6章参考文献 (11)

第一章 前言 《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB 的结合后的基本实验以后开设的。本课程设计的目的是为了让学生综合数字信号处理和MATLAB 并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 IIR 数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。其设计方法主要有经典设计法、直接设计法和最大平滑滤波器设计法。FIR 数字滤波器的单位脉冲响应是有限长序列。它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。 第2章 数字信号处理基础知识部分 2.1巴特沃斯滤波器的幅度平方函数及其特点 巴特沃斯模拟滤波器幅度平方函数的形式是 )N c N c a j j j H 222 )/(11 )/(11ΩΩ+= ΩΩ+= Ω (5-6)

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

数字下变频仿真

数字下变频仿真原理: 信号采样的频谱 调频信号:02 ()cos *(2/2)s x K t n f nt π=+ 00022 02 *cos(2/)cos(2)cos(2) cos(4*/2*/2)cos(*/2) s s s s x f n f f nt f nt f nt K t K t K t ππππ=+=++ 0002022 *sin(2/)cos(2)sin(2) sin(*/2*/2)sin(*/24) s s s s K t K t K x f n f f nt f nt f nt t ππππ+-=-+=-+ 因为f 0=30MHz ,整体向左平移30MHz 。 -40-20 带宽为5MHz 通过仿真得到()x n 的时域波形和频域波形,如下图所示。 clc;clear all;close all; f0=30e6; 中心频率 B=5e6; 带宽 T=30e-6; 脉冲宽度 fs=40e6; 采样频率 N=T*fs; 采样点数 K=B/T; 频率变换率 ts=1/fs; 采样周期

t=-T/2:ts:T/2-ts; x=cos(2*pi*(f0*t+K*t.^2/2)); figure(1); title('时域波形'); xlabel('point '); figure(2); plot(abs(fft(x))); title('频域波形'); xlabel('point'); I路信号和Q路信号: ddc_i = x.*cos(2*pi*f0*(1:N)/fs); I路信号ddc_q = -x.*sin(2*pi*f0*(1:N)/fs); Q路信号figure(3); subplot(211); plot(t,ddc_i);grid; title('I路波形');

数字滤波器课程设计

课程设计 课程设计名称:数字信号处理课程设计 专业班级:电信1203 学生姓名:刘海峰 学号: 201216020307 指导教师:乔丽红 课程设计时间:2015/07/01-2015/07/06 电子信息工程专业课程设计任务书

说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

一. 技术要求 ?双线性变换法设计切比雪夫II型数字IIR低通滤波器, ?要求通带边界频率为400Hz, ?阻带边界频率分别为500Hz, ?通带最大衰减1dB, ?阻带最小衰减40dB, ?抽样频率为2000Hz, 二. 设计原理 IIR滤波器的设计包括三个步骤:①给出所需要的滤波器的技术指标; ②设计一个H(z)使其逼近所需要的技术指标:③实现所设计的H(z),IIR数字滤波器设计的最通用的方法是借助于模拟滤波器的设计方法。所以IIR数字低通滤波器的设计步骤是:①按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标;②根据转换后的技术指标设计模拟低通滤波器G(s):③再按一定规则将G(s)转换成H(z)。 在此过程中,我们用到了很多MATLAB中的函数,如设计切比雪夫低通滤波器的函数afd_chebl、由直接型转换为级联型的函数dir2cas、双线性变换的函数bilinear等。其中afd _chebl用于实现用模拟指标设计一个低通模拟滤波器,bilinear用于利用双线性变换法将模拟低通滤波器转换为数字低通滤波器。

三.程序流程图

四:源代码(完美版) %归一化低通滤波器技术指标 clc; clear all; Ap=1; %最大通带衰减 As=40; %最小阻带衰减 W=2000; %抽样周期 Wp=400; %通带边界频率 Ws=500; %阻带边界频率 wp=2*pi*Wp/W; %归一化通带边界频率 ws=2*pi*Ws/W; %归一化阻带边界频率 Wp1=tan(wp/2); %模拟低通滤波器通带边界频率 Ws1=tan(ws/2); %模拟低通滤波器阻带边界频率 %归一化切比雪夫II型低通模拟滤波器 [N,Wn]=cheb2ord(Wp1,Ws1,Ap,As,'s'); %确定滤波器阶数和频率尺度缩放因子 [BT,AT]=cheby2(N,As,Wn,'s');%传输函数的系数 [Z,P,K]=cheb2ap(N,As);%最小阻带衰减为As(DB)的N阶归一化模拟切比雪夫2型低通滤波器的零点、极点和增益因子 [H,W]=zp2tf(Z,P,K);%传输函数有理化形式 figure; [P,Q]=freqs(H,W);

数字带通滤波器

课程设计报告 专业班级 课程 题目 学号 学生姓名 指导教师 年月

一、设计题目:IIR 数字带通滤波器设计 二、设计目的 1、巩固所学理论知识。 2、提高综合运用所学理论知识独立分析和解决问题的能力。 3、更好地将理论与实践相结合。 4、掌握信号分析与处理的基本方法与实现。 5、熟练使用MATLAB 语言进行编程实现。 三、设计要求 采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理 1.用脉冲相应不变法设计IIR 数字滤波器 利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应 h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT ) 式中,T 是采样周期。 如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的 Z 变换与模拟信号的拉普拉斯变换的关系得 (1-1) 则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。 ??? ?? -= Ω-= ∑∑ ∞ -∞=∞ -∞ ==k T j s X T jk s X T z X k a s k a e z sT π21 )(1) (

巴特沃斯数字(精选)低通滤波器

目录1.题目...................................................................... (2) 2.要求...................................................................... . (2) 3.设计原理...................................................................... .. (2) 3.1数字滤波器基本概念 (2) 3.2数字滤波器工作原理 (2) 3.3巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法...................................................................... . (4) 3.5实验所用MATLAB函数说明 (5)

4.设计思路...................................................................... (6) 5、实验内容...................................................................... .. (6) 5.1实验程序...................................................................... (6) 5.2实验结果分析...................................................................... (10) 6.心得体会...................................................................... .. (10) 7.参考文献...................................................................... .. (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤

通信系统中的数字上变频和下变频

通信系统中的数字上变频和下变频 数字上变频器(DUC)和数字下变频器(DDC)不仅仅是通信应用(如软件无线电)中的关键,而且在需要窄带信号高速流的应用中也是重要的。另外,DDC结构容易控制所有取样速率下的混淆防止分样。 让我们看看数字记录5MHz带宽(中心在50MHz)信号的问题。此信号可以是来自RF-IF模拟下变频器的信号或者是直接从天线接收的信号。为了满足尼奎斯特准则,我们需要以 105ms/s取样率取样此信号。然而,为了合理地捕获此信号,应该在较高的取样率(至少200ms/s)取样此信号。假设ADC为16位,在该速率下被取样的信号会产生400MB/s数据。也许更难办的是以这样高速率采集和存储数据缺乏商业可用的方案。大多数可用的PC基数字器仅能在大约几分之几秒内存储此数据。 数字下变频 DDC在持续时间期间可以数字记录RF信号。在此实例中,我们仅需要记录5MHz信号(中心频率50MHz),而不是ADC的整个尼奎斯特带宽。DDC允许除去其余数据,并降低数据率。在现场可编程门阵列(FPGA)中实现时,简单的数字下变频分为3个性质不同的步:频率变换、滤波和分样(图1)。 频率变换和滤波 第1步是频率变换。5MHz频带需要降低变换到基带,靠乘或与载频(fc)正弦信号混频实现这种变换。用数字控制振荡器(NCO)数字产生正弦波。NCO通常也称之为本机振荡器(LO),它可以在精确频率和相位下产生取样波形。 随着信号从50MHz变频到基带,信号拷贝也从50 MHz变频到100 MHz。基于此原因,新的基带信号必须滤波,去除较高频率的信号。然而,到此我们的任务没有完成。我们仍有1个在200ms/s取样的低频基带信号。传输额外不必要数据时不希望PC总线过载,我们重新取样信号来降低有效取样率。这靠分样实现,在规则的时间间隔内从数字化的信号中去除数据点。在此例中,取样从200ms/s下降到10ms/s,每20个取样去除19个取样。 防止混淆的分样 采用分样,数字化器的采集引擎继续以同样的最大速率进行取样。然而,仅有少量的采集点被存储、被取出和传输到PC,这降低取样率到所希望的水平。但是,此技术不是极简单的。 为便于说明,假定数字化器的最大取样率是100MS/s,使其尼奎斯特频率为50 MHz,而信号有两个分量:10 MHz基频和20MHz激励频率分量。若数字化器分辨率为14位,则在100MS/S总数据率是200MB/s,这远远高于PCI总线理论极限132MB/s。这是采用较低取样率(如25MS/s)的1个原因。现在尼奎斯特频率应该是12.5MHz。然而,20MHz频率分量混淆回到5MHz。现在,不可能告知信号实际上是否是5MHz信号或混淆到5MHz的另外较高频率信号(20MHz,30MHz,45MHz)。 解决此问题的1种方案是称之为防止混淆分样的增强分样技术。在此技术中,数字化器继续在100MS/s最高取样率下采集数据,但加1个低通数字滤波器,在分样前截止尼奎斯特频率(图2)。 正交数字下变频 图1所示DDC只适用于单维调制信号。这种信号的1个实例是AM无线电的双边带幅度调制信号,它用比实际所需两倍的带宽。这样的信号在低和高于载频是相同的。

FIR低通数字滤波器的设计要点

《DSP技术与应用》课程设计报告 课题名称:基于DSP Builder的FIR数字滤波器的设计与实现 学院:电子信息工程学院 班级:11级电信本01班 学号: 姓名:

题目基于DSP Builder的FIR数字滤波器的设计与实现 摘要 FIR数字滤波器是数字信号处理的一个重要组成部分,由于FIR数字滤波器具有严格的线性相位,因此在信息的采集和处理过程中得到了广泛的应用。本文介绍了FIR数字滤波器的概念和线性相位的条件,分析了窗函数法、频率采样法和等波纹逼近法设计FIR滤波器的思路和流程。在分析三种设计方法原理的基础上,借助Matlab仿真软件工具箱中的fir1、fir2和remez子函数分别实现窗函数法、频率采样法和等波纹逼近法设计FIR滤波器。然后检验滤波器的滤波效果,采用一段音频进行加噪声然后用滤波器滤,对比三段音频效果进而对滤波器的滤波效果进行检验。仿真结果表明,在相频特性上,三种方法设计的FIR滤波器在通带内都具有线性相位;在幅频特性上,相比窗函数法和频率采样法,等波纹逼近法设计FIR滤波器的边界频率精确,通带和阻带衰减控制。

Abstract FIR digital filter is an important part of digital signal processing, the FIR digital filter with linear phase, so it has been widely applied in the collection and processing of information in the course of. This paper introduces the concept of FIR digital filter with linear phase conditions, analysis of the window function method and frequency sampling method and the ripple approximation method of FIR filter design ideas and processes. Based on analyzing the principle of three kinds of design methods, by means of fir1, fir2 and Remez function of Matlab simulation software in the Toolbox window function method and frequency sampling method and respectively realize equiripple approximation method to design FIR filter. Then test the filtering effect of the filter, using an audio add noise and then filter, test three audio effects and comparison of filter filtering effect. Simulation results show that the phase frequency characteristic, three design methods of FIR filter with linear phase are in the pass band; the amplitude frequency characteristics, compared with the window function method and frequency sampling method, equiripple approximation method Design of FIR filter with accurate boundary frequency, the passband and stopband attenuation control.

线性调频信号脉冲压缩-数字下变频程序 DDC

线性调频信号脉冲压缩-数字下变频程序DDC clc; clear all; close all; B=5e6; %%信号带宽 f0=30e6; %中频 fs=40e6; %采样频率 fs1=(20/3)*1e6; %%抽取后频率 T=24.9e-6; %%时宽 k=B/T; fk=127; %%做DDC时的低通滤波器的阶数 fid=fopen('20090724fc1yindao4-0.dat','r'); sss=fread(fid,32*4096,'int16'); fclose(fid); figure(100);plot(sss);grid on;xlabel('点数');ylabel('幅度');title('32个周期信号时域波形');grid on; L=length(sss); N=4096; R=fix(L/N); for r=1:R ss(r,:)=sss((r-1)*N+1:1:r*N); end figure(1);plot(ss(R,:));xlabel('点数');ylabel('幅度');title('信号时域波形');grid on; %%%%%%%%%%%%%%% 低通滤波器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ff=[0 1/8 1/4 1]; aa=[1 1 0 0]; b=firpm(fk,ff,aa); [h,w]=freqz(b,1,1024); % figure(2); % f=linspace(0,fs/2,1024); % plot(f/1e6,20*log10(abs(h)));xlabel('f/Mhz');ylabel('dB');title('低通滤波器的幅频响应');grid on; %%%%%%%%%%%%%%% DDC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ddcs=zeros(R,N+fk); for r=1:1:R n=-N/2:1:N/2-1; si=ss(r,:).*cos(2*pi*f0*n/fs); sq=-ss(r,:).*sin(2*pi*f0*n/fs); I=conv(si,b);

滤波器的基本技术指标与设计方法

对于滤波器的幅频响应,通常把能通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带之间的界限频率称为截止频率。对于理想的滤波器在通带内具有零衰减的幅频响应,而在阻带内具有无限大的衰减,这种突变的衰减在物理上是不可实现的,实际的滤波器通常在通带和阻带之间有一个过渡带,而且在通带内无法实现没有衰减,在阻带内无法实现无限大衰减,通常有一个容限。图3.25给出了四种滤波器参数的含义https://www.360docs.net/doc/e44735708.html,/article/show-2280.htm 图中δ1和δ2分别为通带和阻带的容限,在设计时通常给出通带允许的最大衰减αp和阻带应达到的最小衰减αs。滤波器的衰减定义为 FIR数字滤波器可以根据要求直接设计,但是对于模拟滤波器和IIR数字滤波器的设计都是基于模拟低通滤波器的基础上进行设计。模拟滤波器的设计流程如图3.26所示。 其中有两个关键的设计步骤,一个就是原型变换,将其他类型的滤波器技术指标转换成模拟低通滤波器的技术指标;另外一个就是模拟低通滤波器设计。 IIR滤波器通常借助模拟滤波器的设计方法来设计。因为在数字滤波器之前,模拟滤波器在设计、应用方面已经有了很长时间,形成了完善的设计理论,并有丰富的设计数据积累和设计表格可以查询,所以在设计数字滤波器时借助模拟滤波器的设计方法是比较经济的。图3.27是IIR数字滤波器的设计流程图。

图中也有两个关键步骤,一个就是从数字域到模拟域的变换,这个变换实现了数字滤波器技术到模拟滤波器技术指标的转换,同样也实现了模拟滤波器系统函数到数字滤波器系统函数的转换;另外一个就是从模拟滤波器技术指标到相应的模拟滤波器的设计。 本资料属于购线网所有,如需转载,请注明出处,更多资料查看,请前往购线网!

相关文档
最新文档