数字设计课件 第四章 组合逻辑设计原理.ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(T7) (X+Y)+Z=X+(Y+Z) (T7’) (X·Y)·Z=X·(Y·Z)(结合律)
• Parenthesization or order of terms in a logical sum or logical product is irrelevant.
(T8) X·Y+X·Z=X·(Y+Z) (T8’) (X+Y)·(X+Z)=X+Y·Z (分配律)
Chapter 4 Combinational Logic Design Principles
本章重点
1、开关代数:公理、定理、定义 2、组合电路的分析:组合电路的结构、逻辑表达式、真值表、时序
图等。
3、组合电路的综合(设计):逻辑抽象定义电路的功能,写出逻辑 表达式,得到实际的电路。
2021/3/17
9
Chapter 4
5. Duality
• Any theorem or identity in switching algebra
remains true if 0 and 1 are swapped and ·and + are swapped throughout.
自等律 0-1律 同一律 还原律 互补律
Proofs by perfect induction
将变量的所有取值代入定理表达式,若等号两边 始终相等,则得证。
4
Chapter 4
3. two-and three-variable theorems
(T6) X+Y=Y+X
(T6’) X·Y=Y·X
(交换律)
Y·Z and (Y+Z) term are the redundant terms in the expression.
• Supplement:
A+A’B=A+B
(消因律)
A’+AB=A’+B
6
Chapter 4
4. n-variable theorems
(T12) X+X+…+X=X (T12’) X·X·…·X=X (广义同一律)
T8—logical multiplication distributes over logical addition
T8’—logical addition distributes over logical multiplication
5
Chapter 4
(T9) X+X·Y=X (T10) X·Y+X·Y’=X
(注:如逻辑式中有带括号的表达式取反,反函数 中保留非号不变。)
例:F=[(A·B’+C)·E]’+G’的反函数。
8
Chapter 4
• finite induction
(1)proving the theorem is true for n=2; (2)then proving that if the theorem is true for n=i, then it is also true for n=i+1.
( A1) X 0 if X 1
( A1') X 1 if X 0
( A2) if X 0 then X ' 1 ( A2 ') if X 1 then X ' 0
( A3) 0 0 0
( A3') 11 1
( A4) 11 1
( A4 ') 0 0 0
( A5) 0 1 1 0 0
2
Chapter 4
4.1 Switching Algebra
百度文库
• Deals with boolean values : 0, 1 • Signal values denoted by variables
(X, Y, FRED, etc.)
• Boolean operators :+, ·, ’
1、Axioms
• T13’--- equivalent transform between “OR-
NOT” and “NOT-AND”. Exp. :G=X’Y+VW’Z Dt—heeMo—orermg—asn =?
7
Chapter 4
(T14) [F(X1,X2,……,Xn, + , ·)]’=F(X1’,X2’,……Xn’, ·, +)
• T14—Generalized DeMorgan’s theorem,也
称为“反演定理”,get the complement of a logic expression (inverse function)。
• keep the original operating order; • complement all variables; • swapping ‘0’ and ‘1’; • swapping ‘+’ and ‘·’
数字逻辑设计及应用
1
Combinational logic circuit
• The outputs depend only on its current inputs.
• each output can be specified by truth table or Boolean expression.
(T9’) X·(X+Y)=X (吸收律) (T10’) (X+Y)·(X+Y’)=X (组合律)
T9、T9’、T10、T10’: be used to minimize logic functions.
(T11) X·Y+X’·Z+Y·Z=X·Y+X’·Z
(T11’) (X+Y)·(X’+Z)·(Y+Z)=(X+Y)·(X’+Z) (一致律)
( A5')1 0 0 1 1
3
Chapter 4
2. Single Variable Theorems
(T1) X+0=X (T2) X+1=1 (T3) X+X=X (T4) (X’)’=X (T5) X+X’=1
(T1’) X·1=X (T2’) X·0=0 (T3’) X·X=X
(T5’) X·X’=0
(T13) (X1·X2·……·Xn)’=X1’+X2’+……+Xn’ (T13’) (X1+X2+……+Xn)’=X1’·X2’·……·Xn’ ( DeMorgan theorems )
• T13--- equivalent transform between “AND-
NOT” and “NOT-OR”.
相关文档
最新文档