中职数学7.1.1任意角的概念ppt课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的加减运算
例 求和并作图表示:90+(-30 )=( 60 )
-30 90 60
各角和的旋转量等于各角旋转量的和.
练习 2 求和并作图表示 30+45 ,60 -180.
Page 6
终边相同的角之间的关系
90 80 70 60 50 40 30 20 10
0 第一季度 第二季度 第三季度 第四季度
处于标准位置的角的终边落在第几象限,就把这个
角叫做第几象限的角.如果角的终边落在坐标轴上,就
认为这个角不属于任何象限.
y
O
x
例 是第一象限角, 是第二象限角, 不属于任何象限.
Page 10
例1(2) 指出下列各角分别是第几象限的角. (1)45; (2)135; (3)240; (4)330.
(4) 终边相同的角有无数多个, 它们的差是 360 的整数倍.
P同的角的集合. (1)45; (2)135; (3)240; (4)330.
Page 9
象限角
在直角坐标系中讨论角时,通常使角的顶点和坐 标原点重合,角的始边与x轴的正半轴重合.这样角的 大小和方向可确定终边在坐标系中的位置.这样放置 的角,我们说它在坐标系中处于标准位置.
0< <90,
所以第一象限角的集合是
{ | k·360 <<90+k·360,kZ}.
试一试: (1)写出第二象限角的集合; (2)写出第三象限角的集合; (3)写出第四象限角的集合.
Page 14
1. 锐角是第一象限角. 2. 第一象限的角全是锐角. 3. 第一象限的角都是正角. 4. 终边相同的角一定相等. 5. 小于 90 的角都是锐角. 6.小于 90 的角不都是正角.
东部 西部 北部
Page 7
+360 -360
+2×360 -2×360
+3×360 … -3×360 …
结论
所有与 终边相同的角构成一个集合:
S={ | =+k360,k Z }
注意
(1) k Z;
(2) 是任意角;
(3) 终边相同的角不一定相等, 但相等的角终边相同;
(2) 因为 640=360+280, 所以 280 的角与640的角终边相同,它是第四象限角.
(3)因为-950=-3×360+130, 所以 130的角与-950的角终边相同,它是第二象限角.
Page 13
例4 写出第一象限角的集合. 解 在0~ 360 之间,第一象限角的取值范围是
O
A
角可以记作角 或 ,也可简记为 .
Page 4
如图 AOB =120 , B
BOA = -120
O
A
练习 1 画出下列各角. (1)0,360 ,720 ,1 080 ,-360 ,-720; (2) 90 ,450 ,-270 ,-630.
Page 5
三角
三
三角
角
三角
5.1.1 角的概念的推广
初中学过的角的定义是什么?
在平面内,角可以看作一条射线绕着它的端点旋转而形 成的图形.
B
O
A
如图 AOB = BOA .
Page 2
体育课上同学们在扔链球.
如何描述链球转过的角度 的大小和方向呢?
Page 3
任意角的概念
按逆时针方向旋转所形成的角叫做正角; 按顺时针方向旋转所形成的角叫做负角; 当一条射线没有作任何旋转时叫做零角.
Page 11
例2 写出终边在 y 轴上的角的集合. y
O
x
试一试 : 写出终边在 x 轴上的角的集合.
Page 12
例3 在0~ 360 内,找出与下列各角终边相同的角,
并判断它是哪个象限的角.
(1) -120; (2) 640;
(3) -950.
解 (1) 因为 -120 =-360+240, 所以 240 的角与-120的角终边相同,它是第三象限角.
Page 15
(√ ) ( ) ( ) ( ) ( ) (√ )
共同回顾: 1. 任意角的概念. 2. 角的合成运算. 3. 终边相同的角的表示方法. 4. 象限角的概念与表示方法.
Page 16
教材P127,练习 A 组第 3、 4 题; 练习 B 组第 1、 3 题.
Page 17