第二节 中心极限定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节中心极限定理
独立同分布序列的中心极限定理
定理1设X1,X2,…Xn,…是独立同分布的随机变量序列,且具
有相同数学期望和
方差E(Xi)=μ,D(Xi)=σ2(i=1,2,…)。
记随机变量
的分布函数为F n(x),则对于任意实数x,有
(不证)
其中φ(x)为标准正态分布函数。
由这一定理知道下列结论:
(1)当n充分大时,独立同分布的随机变量之和的分布近似于正态分布N(nμ,nσ2)。
我们知道,n个独立同分布的正态随机变量之和服从正态分布。
中心极限定理进一步告诉我们。
不论X1,X2,…X n,…独立同服从什么分布,当n充分大时,其和Z n
近似服从正态分布。
(2)考虑X1,X2,…X n,…的平均值,有
它的标准化随机变量为,即为上述Y n。
因此的分布函
数即是上述的F n(x),因而有
由此可见,
当n充分大时,独立同分布随机变量的平均值的分布近似于正态分布
[例5-3]对敌人的防御地段进行100次射击,每次射击时命中目标
的炮弹数是一个随机变量,其数学期望为2,均方差为1.5,求在100
次射击中有180颗到220颗炮弹命中目标的概率。
解设X i为第i次射击时命中目标的炮弹数(i=1,2,…,100),则为100次射击中命中目标的炮弹总数,而且X1,X2,…X100同
分布且相互独立。
由定理1可知,随机变量近似服从标准正态
分布,故有
[例]某种电器元件的寿命服从均值为100(单位:小时)的指数分布。
现随机抽出16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1 920小时的概率。
解设第i只电器元件的寿命为X i=(i=1,2,…16),
E(X i)=100,D(X i)=1002=10 000,
则是这16只元件的寿命的总和。
E(Y)=100×16=1 600,D(Y)= 160 000,
则所求概率为:
棣莫弗(De Moivre)-拉普拉斯(Laplace)中心极限定理下面介绍另一个中心极限定理,它是定理1的特殊情况。
定理2(棣莫弗-拉普拉斯中心极限定理)设随机变量Z n是n 次独立重复试验中
事件A发生的次数,p是事件A发生的概率,则对于任意实数x
其中q=1-p,φ(x)为标准正态分布函数。
由棣莫弗-拉普拉斯中心极限定理得到下列结论:
(1)在贝努利试验中,若事件A发生的概率为p。
又设Z n
为n次独立重复试验中事件A发生的频数,则当n充分大时,Z n
近似服从正态分布N(np,npq)。
(2)在贝努利试验中,若事件中A发生的概率为p,为n
次独立重复试验中事件A发生的频率,则当n充分大时,近似
服从正态分布
【例】设某单位内部有1000台电话分机,每台分机有5%的时间使用外线通话,假定各个分机是否使用外线是相互独立的,该单位总机至少需要安装多少条外线,才能以95%以上的概率保证每台分机需要使用外线时不被占用?
解:把观察每一台分机是否使用外线作为一次试验,则各次试验相互独立,设X为1000台分机中同时使用外线的分机数,则X~B(1000,0.05),
np=1000×0.05=50,
根据题意,设N为满足条件的最小正整数
由于φ(-7.255)≈0,故有
查标准正态分布表得φ(1.65)=0.9505,
故有
由此
N≥61.37
即该单位总机至少需要62条外线,才能以95%以上的概率保证每台分机在使用外线时不被占用。