浅析矿山电气设备的无功补偿方法及必要性

浅析矿山电气设备的无功补偿方法及必要性
浅析矿山电气设备的无功补偿方法及必要性

浅谈电动机无功功率就地补偿

浅谈电动机无功功率就地补偿论文导读:现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。4.4应避免电容器和电动机产生自激电压。关键词:电动机,电容器,就地无功补偿,无功功率 0.概述 现代工矿企业中,三相异步电动机是最常用的电气设备之一,在企业的生产设备中占有相当大的比例。由于它们都是电感性负荷,所以在企业内部的生产运行中,功率因数一般都比较低,需要从电源中吸收大量的无功功率,才能正常工作,给企业造成较大的电压损失和电能损耗。无功补偿是指采用另加无功补偿装置的办法,让无功负荷与无功补偿装置之间进行无功功率交换,以提高系统的功率因数,降低能耗,从而大大减少供电线路,改善电网电压质量。 许多企业一般都是在企业内部配电室里低压母线上集中安装一些电容器柜,对变配电系统的无功功率进行补偿,这对于提高企业内部的供电能力,节约变配电损耗都有积极作用。可是,由于企业内部的电动机大都通过低压导线连接,分散在各个生产车间,形成企业内部的输配电网络,由此,大量的无功电流仍然在企业内部的输配电线路中流动,这些无功电流在企业内部所造成的损耗,依然不能解决。 电动机无功功率就地补偿,就是把电动机所需要的无功电流局限在电

动机设备的最终端,实现无功功率就地平衡,使得整个变配电网络的功率因数都比较高,有效地减少输配电线路的无功损耗。 1.三相异步电动机运行功率因数及损耗 三相异步电动机运行时,所消耗的功率包括有功功率和无功功率两个分量。有功功率是用于电动机产生机械转矩并且驱动负载所需的功率,它的电流随负载的增加而增加,而无功功率,则是用于电动机内部的电场与磁场随着电源频率的反复变化,在负载与电源之间不断地进行能量交换时所消耗的功率。无功电流在负载变化的情况下,其变化很微小,在相位上,电流的变化总是滞后于电压90°,所以是纯电感性质的。在实际运行中,电源供给电动机的总电流是有功电流和无功电流的矢量和,当电动机处于满负荷运行时,有功电流大于无功电流,总电流的功率因数较高,而当负载下降时,有功电流减小,无功电流基本不变,所以功率因数降低。 可以这样认为:当电动机的输出功率一定时,功率因数越低,就意味着其所需的无功功率越大,因而造成的损耗也较大。实践证明,无功功率所产生的电能损耗,主要是发生在输配电线路上的,对于那些距离电源较远,线路电阻比较大,电动机运行功率因数低的终端设备,所造成的无功损耗就更加突出了。 2.无功功率就地补偿原理及电容量的选择 2.1因为在电容负载中产生的超前无功电流与在电感负载中产生的滞后无功电流能够相互补偿,所以在电动机电源终端并联一个适当容量的电容器,就可以使电动机所需的无功电流大部分由并联的电容器供

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

用电企业无功功率补偿的作用、目的和意义

用电企业无功功率补偿的作用、目的和意义 电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用: 1、提高功率因数 如图2所示图中

煤矿井下供电系统中无功补偿技术的应用

煤矿井下供电系统中无功补偿技术的应用 发表时间:2019-09-20T10:58:03.483Z 来源:《基层建设》2019年第20期作者:邵冉 [导读] 摘要:供电系统是矿井生产作业的动力来源,确保其运行的有效性对矿井的长久可持续发展意义重大。 淮南矿业集团“三供一业”供气维修改造工程建设项目部 摘要:供电系统是矿井生产作业的动力来源,确保其运行的有效性对矿井的长久可持续发展意义重大。无功功率是影响供电系统性能发挥的主要因素之一,有效消除这一因素至关重要。结合具体工程实际,在分析矿井现有供电系统存在问题的基础上,对井下供电系统无功补偿方案设计开展分析,并对其应用效果做出探究,希望能够为其他矿井相似工程的开展提供借鉴和参考。 关键词:煤矿;供电系统;无功补偿;方案设计; 引言 伴随矿井生产工艺自动化水平的不断提升,自动化设备在井下生产中的使用量不断增加,相应的变频开关及非线性负载的应用越发普遍,这在大幅提升矿井生产作业效率的同时也使得矿井供电系统负荷显著增加,电网谐波污染和电压波动现象明显,电缆、各用电装置的绝缘性及整个供电系统的稳定性受到显著影响,极易发生大面积的井下停电事故,严重时还会导致漏电安全事故发生,对生产高效运行和安全开展构成一定威胁。有鉴于此,针对井下供电系统使用中用电问题的诱因开展分析,探究具有良好适用性的无功补偿工艺,对于提升井下供电网络运行稳定性、确保用电安全意义重大。 1 工程概述 A矿井下中央变电所设计电压为35 k V,内部设计选用双回路电源进线模式,两条电源线可互为备用电源。在井下实际回采中,先借助型号为S11-25000的变压装置将变电所35 k V电压下调至10 k V后通过专用电缆及架空线将电能传输至井下各用电区域。图1所示即为供电系统结构示意图。 图1 供电系统结构示意图 2 现有供电系统问题分析 2.1 功率因数低电能浪费严重 根据井下实测可知,A矿井下原供电系统功率因数介于0.6~0.7,特别是在长距离供电线路中,有大量的无功电流,引起了较为严重的电能浪费现象。 2.2 变压器带载能力偏低 变压器带载能力计算公式为: 式 (1) 中,Pw为变压装置带载能力,k V?A;Py为变压装置容量,k V?A;βM为变压装置负荷率,取值0.8;cosφ为功率因数。 依照A矿井下供电实际状况,其供电系统功率因数取值0.7,则根据式 (1) 计算可知A矿井下变压装置带载能力为Pw=1 400 k V?A。不过A矿井下回采作业的采煤机额定功率为1 560 k W,这表明供电系统作业时其变压装置带载能力可能无法满足机电设备运行需求,从而导致设备无法正常运行。这种现象的长期存在往往会使得机电设备绝缘性能和工作效率大幅下降。 2.3 末端电压偏低设备启动存在故障 A矿供电系统实际使用中存在较多无功电流,使得系统运行中存在较大的压降。这种情况下,一旦遇到用电高峰阶段,极易引起大功率机电设备启动难的问题,而且随着A矿供电系统的多年使用,其线路末端电压降低现象越发明显,对正常生产的影响也越发明显。 2.4 威胁供电安全 A矿供电系统中各电源操控按键与机电设备间有着明显的无功电流交互冲突,而这种现象的长期存在会在一定程度加速设备老化,特别

第四章 异步电动机的功率因数与无功补偿.doc

第四章异步电动机的功率因数与无功补偿 §4-1异步电动机的功率因数与无功功率的经济当量 §4-2 电动机无功补偿的分类 §4-3电动机就地补偿的技术经济效益 §4-4绕线型感应电动机的转子进相器 §4-1异步电动机的功率因数与无功功率的经济当量 工矿企业消耗的无功功率异步电动机约占70%。不少电动机负载率很低,经常处在轻载或空载运行,功率因数普遍不高。负载率愈低,则功率因数愈低,无功功率相对于有功功率的百分比更为显著地浪费电能。因此对于异步电动机采用就地无功补偿以提高功率因数、节约电能,减少运行费用以及提高电能质量具有重要的意义。 用户功率因数的高低,直接关系到电网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约用电和整个供电区域的供电质量。但在实际电力系统中异步电动机作为传统的主要负荷使电网产生感性无功电流,这些无功电流都导致电网中产生大量的无功功率。在无功功率传递过程中会消耗大量的有功功率率,由于安装了无功补偿容量,减少了无功功率传输而降低的有功功率损耗值与无功功率减少值的比值,即输送的无功功率减少1 kvar(或增加1 kvar 无功补偿容量)时所减少的有功功率损耗值就是无功功率的经济当量。 线路的有功功率损耗值为:

安装无功补偿容量Q bch 后,有功功率损耗值为: 减少的有功功率损耗为: 无功补偿的经济当量为: 其中C y 为无功功率通过线路时引起的有功功率损耗的单位损耗值;Q bch /Q 为无功功率的相对降低值,称为补偿度。 当补偿度很低,即Q bch <>Q 时, C bch =C y 说明补偿容量越大,对减小有功损耗的作用越小,并非补偿容量越大越经济。补偿容量的大小需通过技术经济比较来确定。 232232222332210101010L LP LQ S R P Q P R U U P Q R R U U P P ----?+==?=?+?=+22 ' 3322()1010bch L Q Q P P R R U U ---=?+?'32(2)10bch bch L L Q Q Q P P P R U --?=-=?32232(2)10(2)10(2)(2)bch L bch bch bch LQ bch bch y Q Q P C R Q U Q QQ R QU P Q Q C Q Q Q ---?==?-=?=-=-

电机就地补偿柜节能方案

电机就地补偿柜节能方案 1 概述 异步电动机功率因数很低,在电网负荷中异步电动机所占的比重较大,是城乡电网的主要无功负荷。它使各级网损也相应增大,尽管在各级变电所、配电变及各厂矿企业内均装有集中无功补偿装置来提高功率因数,减少电网线损,但集中补偿不仅无法降低低压电网的线损,而且价格较贵。特别是在乡镇,随着乡镇经济的发展,小型家庭式的生产方式在各地较为普遍,家庭织机、小型砧床、车床、冲床、碾米机、脱粒机等到处都有,加上用户分散,低压网络较长,采用集中无功补偿,仍不能降低低压电网的线损。低压电网的高线损率对正在实施的城乡电网同网同价政策带来困难,因此,必须对乡镇家庭的异步电动机推广低价的就地无功补偿。三相低压异步电动机就地无功补偿就是一台与异步电动机特性相配合的电容器直接并联于该电动机,其保护仅利用原异步电动机的保护,不需要外加其它保护装置。 为实施城乡电网同网同价,应大力推广异步电动机就地无功补偿,建议电容器制造厂家应生产与异步电动机相配套的产品。 2 三相低压异步电动机就地无功补偿的好处 用三相低压异步电动机就地无功补偿有以下好处:①简单、价低。因为只是在电动机上并联一台合适的专用电容器就可,不需要外加其它保护装置,便于推广;②不仅能提高低压电网的功率因数,降低了线损,同时也提高了供电电网的功率因数,降低了配电网线损;③对用户来讲,节约了内线损耗,减少电费,同时可以不会因功率因数不合格而罚款(这对各厂矿企业内的异步电动机也同样)。装置三相低压异步电动机专用无功补偿电容器,具有较好的经济效益;④提高了低压线路的功率因数,减少末端电压波动,改善了用户的电压,提高了电压质量,也增加了产品数量及质量;⑤因为补偿电容器随电动机投切,只要补偿的电容器容量配置适当,不存在无功过补偿,有较为理想的补偿效果。 用三相低压异步电动机就地无功补偿是一种经济、简单、高效、可靠的无功补偿方法,应在广大的乡镇和工矿企业推广。为什么一个合适容量的电容器可以与异步电动机直接并联,而不需要外加其它保护装置,仅利用原异步电动机的保护就可,而且是一种经济的无功补偿。这是因为 ①异步电动机在运行时所需要的无功功率从异步电动机的等效电路中可知由两部分组成:一部分是励磁支路所需的无功功率;另一部分是负荷支路所需的无功功率。小容量的异步电动机主要是励磁支路所需的无功功率,当负荷从由零到满载时,其变化很小,随负荷的增加而略有下降;而负荷支路所需的无功功率随负荷增加而增加,其值一般要比励磁支路所需的无功功率要小,异步电动机容量越小,相对的比例也越小。小容量的异步电动机从空载到满载,其总的无功功率的变化不大,以Y801.2(0.75kW)为例,空载时无功功率为0.531kvar,而满载时为0.646kvar。表1为几种小容量Y型异步电动机在不同的负载率下所需的无功功率。从表中可知,容量小所需无功功率在不同的负载下变化很小。 异步电动机随着容量的增大,从空载到满载所需的总无功功率变化相应加大,如 Y165L-2(18.5kW),空载时所需无功功率5.343kvar,而满载时为10.651kvar。但一般空载与满载的无功功率之比约为0.5以上。因此,对低压异步电动机的无功补偿,其并联电容器在运行时的实际补偿容量,只要能补偿其励磁功率,就能使异步电动机运行的功率因数在负载率从40%~100%都有较高值(0.9以上),而低负载时,其功率因数虽不能达到0.9左右,但由

浅谈10KV线路的无功补偿

浅谈10KV线路的无功补偿 电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件,没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动,但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。因此,如何减少无功电力的长距离输送,已成为电力行业一个关键性的问题。 无功补偿的原则之一:集中补偿与分散补偿相结合,以分散补偿为主。这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。由于用户端随机、随器、随荷补偿的不完全或未进行补偿,线路上仍有大量的无功负荷在传输。采用在10千伏线路上并联高压电容器实现就近补偿,以降低线路传输电流,降低线路损耗,这就是线路无功补偿。 1.线路补偿容量的确定 线路补偿电容器装置一般安装在室外电线杆上,没有自动投切装置,所以只能进行固定补偿。为此选定的电容器容量必须为线路流动的最小无功负荷,否则会发生无功倒送。所以要进行线路无功补偿就必须实测低谷时期无功负荷,然后确定无功补偿容量。 2. 线路电容器安装地点及补偿容量 2.1无功负荷沿线路均匀分布 根据理论计算,从降低线损的角度看,以下补偿容量和安装位置为最佳值: 2.1.1只安装一组电容器 Q为该线最小负荷时无功功率值,L为线路总长度。 C0=1/3Q 由变电所实施无功补偿。 C1=2/3Q

2.1.2安装两组电容器 C0=1/5Q 由变电所实施无功补偿。C1=C2=2/5Q 2.1.3安装三组电容器

无功补偿标准

CECS 32-1991 并联电容器用串联电抗器设计选择标准.chm CECS S33-1991 并联电容器装置的电压、容量系列选择标准[附条文说明] .chm DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件.pdf DL 484-1992 静态零序补偿型电抗继电器技术条件.doc DL 5014-1992 330~500kV变电所无功补偿装置设计技术规定.pdf DL/T 597?1996 低压无功补偿控制器订货技术条件.pdf DL/T 604-1996 高压并联电容器装置订货技术条件.pdf GB 11024-1989 高电压并联电容器耐久性试验.pdf GB 15166.5-1994 交流高压熔断器并联电容器外保护用熔断器.pdf GB 3667-1997 交流电动机电容器.pdf GB 3983.1-1989 低电压并联电容器.pdf GB 3983.2-1989 高电压并联电容器.pdf GB 50227-1995 并联电容器装置设计规范.pdf GB 50227-1995 并联电容器装置设计规范条文说明.doc GB 6565-1987 交流高压断路器的开合电容器组试验.doc GB 6915-1986 高原电力电容器.pdf GB 6916-1986 湿热带电力电容器.doc GB 7675-1987 交流高压断路器的开合电容器组试验.pdf GB/T 15576-1995 低压无功功率静态补偿装置总技术条件.pdf GB/T 2900.16-1996 电工术语电力电容器.pdf GB/T 4705-1992 耦合电容器及电容分压器.doc GB/T 4787-1996 断路器电容器.pdf JB 7113-1993 低压并联电容器装置.pdf JB 7115-1993 低压无功就地补偿装置.pdf JB/T 7111-1993 高压并联电容器装置.doc JB/T 7112-2000 集合式高电压并联电容器.doc JB/T 7113-1993 低压并联电容器装置.doc JB/T 7115-1993 低压就地无功补偿装置.doc JB/T 7613-1994 电力电容器产品包装通用技术条件.doc JB/T 8168-1999 脉冲电容器及直流电容器.doc JB/T 8169-1999 耦合电容器及电容分压器.doc JB/T 8596-1997 交流电动机起动用电解电容器.doc JB/T 8958-1999 自愈式高电压并联电容器.pdf JB/T 9663-1999 低压无功功率自动补偿控制器.doc SD 205-1987 高压并联电容器技术条件.pdf SD 325-1989 电力系统电压和无功电力技术导则(试行).pdf SDJ 25-1985 并联电容器装置设计技术规程(试行).doc ZBK 48003-1987 并联电容器电气试验规范.doc 电力系统电压和无功电力管理条例.doc

无功补偿的意义及原理

四、无功补偿的意义及原理 人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。 无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 无功补偿的作用主要有以下几点: (1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗; (2)稳定受电端及电网的电压,提高供电质量。在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力; (3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 (一).无功补偿的物理意义 无功功率只是描述了能量交换的幅度,而并不消耗功率。图中的单相电路就是这

方面的一个例子,其负载为一阻感负载。电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。无功功率的大小表示了电源和负载电感之间交换能量的幅度。电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。 下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。这时无功功率的大小当然也表示了电源和负载电感之间能量交换的幅度。无功能量在电源和负载之间来回流动。

无功功率补偿投切原理

无功功率(reactive power ):无功功率是按电磁感应原理工作的某个交流供用电设备和交流电源之间的能量交换,这种能量互换的最大值称为无功功率。这部分能量是用电器工作所必须的,但不能转换为我们所需要的能量,如机械能和热能。为了形象的描述电源利用的程度,我们提出了功率因数的概念,功率因数就是电路中有用功率和视在功率(电源总功率)的比值。由此可见,提高电网的功率因数对国民经济发展的重要意义。功率因数的提高,能使发电设备的容量得到充分利用,减少线路电流和功率损失。 无功补偿原理:通常我们用来提高功率因数的方法就是补偿法。即采用能够提供无功功率的装置来补偿用电设备所需的无功功率,降低电源的功率损失,提高功率因数,采用电力电容器来补偿用电设备所需无功功率的方法,称为电容无功补偿法。 这是由于理想的电容器在电路里是不消耗电能的,它只是从电源吸收电能转换成电场能,再把电场能转换成电能还给电源,完成它与电源之间的能量互换,因此电容上的功率也是无功功率,它的无功功率是由于电容上的电流I超前电压90°引起的,而我们的用电设备大多数都是感性负载,其工作时由于电流滞后引起的无功功率刚好与电容引起的无功功率相反。所以我们可以利用电容工作时产生的无功功率来补偿用电设备在工作时消耗的无功功率。 电容投切无功补偿简介:通过以上分析我们知道在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。电容组投切的时机和数量则由专用控制器决定,而电容组容量一般选择系统额定容量的15%~40%。 电容投切无功补偿装置组成及其技术要点: 电容器:选用优质自愈式并联电容器,可按不同容量灵活编码组合,投切级数多,大容量补偿可一次到位。 控制器:选用快速DSP芯片,能够准确快速的检测出电路当前的功率因数,并根据当前功率因数选择合适的电容组数量投入到电路中,或在过补偿时及时投入感性电抗消除影响。 投切开关:触点式:功耗较小,但不适合频繁开启的场合。 晶闸管式:开关频率高,但功耗较高,容易损坏。 复合式:开关时采用晶闸管,导通后切换到触点式,开关频率高,功耗小,但是结构复杂 电抗器(装置中多为感性):多用在高压系统中,用来消除过补偿功率,滤除谐波。

浅谈煤矿电气安全隐患及存在问题

龙源期刊网 https://www.360docs.net/doc/e49847908.html, 浅谈煤矿电气安全隐患及存在问题 作者:齐海鹏 来源:《科技探索》2014年第02期 摘要:本文对目前煤矿电气安全存在的隐患及存在的问题进行剖析,通过事故、统计数据阐述电气安全可能造成的危害,并针对煤矿电气目前存在的设备局限性、本质安全性、漏电、短路、无功补偿等方面的问题进行了分析。 关键词:煤矿电气安全隐患存在问题 1 煤矿电气安全隐患 电对于现代的煤矿开采技术来说,是首要的先提条件。矿井停电会造成停风、有害气体积聚;停止排水会造成淹井;停止提升,受灾人员不能升井,救灾人员不能下井。而煤矿井下使用电能的最大危害是故障电流危险性,受伤的电缆造成漏电或形成短路,从而造成人身触电或引起电火灾,更甚者是电明火外露,引起瓦斯、煤尘爆炸事故。 1.1瓦斯、煤尘爆炸的主要引爆源 众所周知,煤矿时刻受着水、火、瓦斯的威胁,伤亡事故的发生率比任何工业部门都高。爆炸事故的瓦斯(主要是甲烷)、煤尘一直是煤矿安全生产的大敌,世界各主要产煤国都在 为防治瓦斯事故投入巨大的人力、物力、财力,但是重大瓦斯爆炸等恶性事故仍不断发生。通过调查分析,大多数的瓦斯、煤尘爆炸事故的点火源主要还是电气直接或间接引起的。 1.2人身触电事故 在煤矿井下潮湿的环境下,尤其是被采掘机械拖曳的软电缆,最容易受到各种机械损伤,近年来由于坚持使用漏电保护装置,井下交流电网触电死亡事故已明显减少,但尚未彻底杜绝。特别是直流架线电网由于没有漏电保护措施,更容易造成人身触电伤亡事故。 1.3 电机、电缆大量烧损 由于采掘机械经常是在重载的条件下频繁起动,过载、堵转不断发生,继电保护很难与之配合,因此,采掘机械的驱动电动机、电缆经常烧毁。 1.4煤矿井下的外因火灾主要是电火灾 电器设备发热、电缆过负荷发热着火是矿井火灾事故的主要外因,而且电火还是矿井爆炸事故的主要点火源。根据1970年至1981年全国煤矿调查统计,在255次重大爆炸事故中,电火引爆115次,占45%,1983 年至1986年间共发生瓦斯爆炸事故49起,煤尘爆炸事故7起,

三相交流异步电动机的无功补偿

三相异步交流电动机的无功补偿 邵宗岐北京时代集团公司 摘要:三相交流异步电动机在工矿企业中应用广泛,无论高压还是低压电动机,采取就地无功补偿对电动机运行节能降损具有重要意义。根据工程项目的实施,对电动机无功补偿容量的计算方法做了归纳总结,多项工程实践证明是切实可行的,实际应用也取得了良好的效果。 关键词:无功补偿; 空载电流; 负载率; 电动机效率 Three Phases AC Asynchronous Motor’s Reactive Power Compensation SHAO Zong-qi Time Group Incorporation Beijing China Abstract:Three phase AC asynchronous motors are widely used in factories.Whether for high voltage motors or low voltage motors, it’s important to effectively spread individual correction of the power factor. According to the project in practical experience,the design method of the the reactive power correction is summarized.It has been proved by many projects and gained good purpose in practical applications. Keywords: reactive power compensation;no-load current; load factor; motor’s efficiency 概述 在我国,三相异步电机用电量占全国发电总量的60∽70%,是主要用电负荷。然而,由于异步电动机独特的工作原理,以及电网节能降损的要求,异步电动机的应用使无功补偿装置成为其必不可少的配备一部分。异步电动机作为企业的主要用电设备,在企业用电总消耗的无功功率中约占70%,因此对于异步电动机采用就地无功功率补偿以提高供电系统的功率因数,节约电能,减少运行费用以及提高电能质量,具有重要的意义。尤其高压电动机额定容量大,年运行小时多,实施无功就地补偿,则节能效果更加显著。我国有关部门对三相异步电动机无功就地补偿推广应用制定了相应的标准,国家技术监督局GB3485-83<<评价企业合理用电导则>>中规定:在100kW以上的异步电动机在安全条件允许的情况下,就地补偿

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

无功功率就地补偿说明

HETB-S10无功功率就地补偿装置说明: 电动机无功功率就地补偿技术是国家推广的一项节电项目。大力推广这一新技术,对节能具有十分重要的意义。由于低压供电负荷距离变压器较远,采用电动机无功功率就地补偿技术除了节约电能外,还可降低线路压降、使电动机易于起动。 1、电动机就地补偿容量的选择 电动机就地补偿容量的选择,一般应以空载时补偿其功率因数至1为宜,不能以负荷情况计算。因为以空载情况补偿,则满载时仍为滞后。若以负荷情况补偿至cos =1,空载(或轻载)时势必过补偿(即功率因数超前)。过补偿的电动机在切断电源后,由于电容器之放电供给电动机以励磁,能使仍在旋转的电动机成为感应发电机,而使电压超出额定电压好多倍,对电动机的绝缘和电容器的绝缘都不利,因此,感应电动机就地补偿的电容器容量可由下式确定: QC≤1.732UNI0 式中:QC—就地补偿电容器的三相总容量,kW; UN—电动机的额定电压,kV; I0—电动机的空载电流,A。 防止电动机产生自激的电容器容量可按下式选用: QC=0.9×1.732UNI0=1.5588UNI0 就地补偿电容器容量选择的主要参数是电动机的励磁电流,因为不使用电容器可以造成电动机自激是选用电容器容量的必要条件。由于电动机的功率因数与负载率、极数和容量有很大关系,负载率越低,功率因数越低;极数越多,功率因数也越低;同时,容量越小,功率因数也越低。 2、就地补偿的接线方式 2.1直接起动和降压起动的电动机的补偿接线 对直接起动的高低压三相异步电动机,电动机无功功率就地补偿装置的电容器可以直接和它的出线端子相连接,电容器和电动机之间不需要装设任何开关设备。当电动机和电源脱离之后其绕组即为电容器放电电阻,因此不必专设电容器的放电装置。高压电动机的就地补偿装置, 2.2起动困难的低压电动机的补偿接线 高压电动机经常因供电距离太远造成起动困难,这时可以采用电动机无功功率就地补偿技术,为了提升负载端电压,可以适当增加补偿电容器的容量,当电容

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

浅谈矿山电气设备的无功补偿方法及必要性

浅谈矿山电气设备的无功补偿方法及必要性 发表时间:2019-06-13T08:56:48.430Z 来源:《电力设备》2019年第1期作者:宋立昌 [导读] 摘要:在金属矿山开采过程所应用的主要设备中,传动装置基本上均属于交直流传动,例如广泛应用到的运输设备、提升设备、排水设备、通风设备、采矿机械等等。 (山东黄金矿业(莱州)有限公司三山岛金矿山东省烟台市莱州市 261417) 摘要:在金属矿山开采过程所应用的主要设备中,传动装置基本上均属于交直流传动,例如广泛应用到的运输设备、提升设备、排水设备、通风设备、采矿机械等等。同时,很多机电设备属于感性负载,在实际的运行过程中整体功率非常大,而且因为功率因数相对不高,导致机电设备在开启以及停运过程中产生相对大无功功率,同时也会对整个供电系统带来较大影响。会导致整个供电系统所对应的功率因数进一步减小,如此使得系统中出现更大的电能损耗问题,还极易导致供电系统中发生压降或电压升高的问题。在金属矿山企业中,很多负载设备均属于一些非线性的负载设备,例如提升机设备,其进行调速过程中,会将非常多的谐波输送至电网系统中,使得供电网络的电压值发生较大波动。最终,会使得整个系统所拥有的供电水平进一步下降,系统的电耗有所增大,也会使得系统中负载设备发生多次开关问题,极易使得负载设备出现损坏。 关键词:矿山电气设备;无功补偿方法;必要性 1电网供电问题原因分析 1.1无功功率问题 矿井所使用的非线性电子设备、电动机都需要无功功率来维持运行,大量此类设备的投入使用导致电网的无功功率急剧增加,对供电电网产生设备费用投入增加、负载电流增大、电能消耗增加、供电电压波动增加及用电设备无法正常启动运行等严重危害。 1.2电网谐波问题 矿井所使用的馈电开关、电动机、整流设备、变压器以及照明设备等都是金属矿山供电电网的主要谐波源,为了满足矿井自动化生产的要求,大量大功率、大容量的非线性电子设备得到广泛的应用,致使矿井电网谐波问题越发严重。供电电网谐波问题主要包括:供电保护设备误动、设备损耗增加、设备效率降低、精密计量设备发生误差、设备与电缆的绝缘性能降低、使用寿命缩短及对其他用电设备造成电磁干扰等问题。 1.3大型设备瞬间启动问题 矿井所使用的提升机、空压机、排水泵、皮带输送机等大功率设备瞬间启动时,将消耗大量的电流,造成供电线路损耗增加。随着矿井的不断延伸,供电线路越来越长,供电线路电压下降较大。当金属矿山生产高峰期、用电量达到峰值时,整个供电电网电压出现波动,大功率设备难以启动,严重影响到整个供电系统的供电质量。大型设备不能启动作业,严重影响矿井正常生产的同时,还容易引起设备或者电缆过流发热问题,极易引发安全事故。上述三种矿井供电问题是同时存在的,只有对三个问题进行综合整治,才能达到改善矿井供电环境,提高电能利用效率的作用。 2供电系统无功功率及谐波的来源 2.1功率因数偏低和无功补偿不足 某矿的供电系统中,其6KV母线设置了相应的投切补偿装置,这一装置的总容量大小是1400KVar。针对供电系统中的公共点进行测量,测得系统的功率因数偏低,通过全面测量得出供电系统的无功补偿严重不足,其缺口超过了8340KVar。而之所以会出现这一问题,主要是由于供电系统所设置的无功补偿设备所拥有实际容量相对小。 2.2电容器组出现频繁投切问题 对于电容器组而言,最为重要的组成是电容器件,但电容长期运行后,由于经历了非常多的充电以及放电操作,极易导致设备不出现跳变,此时,若将电容器组设备接入至整个供电网络情况下,便会出现形成具有相对高频率大小以及相对高振幅的电流,这一电流可看成是短路电网在合闸操作时形成的相应电流,因此,这一电流也叫做是合闸涌流。因为这一电流所拥有的幅值大小要较正常值高出大约6~8倍左右,同时比供电系统额定电流还要高很多,电流的频率一般超过1000Hz,会导致整个网络受到极大的冲击,尤其是对于断路器装置之中灭弧室所带来的损害是最为严重的。所以,我国国家电网已经出台针对性的规范,要求用户在使用投切电容器组的过程中,要确保投切次数尽量的少。正是由于电容器组出现了频繁的投切问题,使得系统电压变得极不稳定。依照对系统实际测量的数据来看,在电容器组实际投切的过程中,在6KV的母线之上,其对应电压数值在短时间内出现的数值变化变高于8%,而这种电压的变化将会使得电气设备受到极大损坏。另外,由于此种电压波动发生在瞬时,使得系统设置的无功补偿装置无法有效地跟踪符合改变情况,从而不能够完成准确的补偿工作,出现过补问题以及欠补问题,使得系统短时以及长时的闪变均高于标准允许值。 2.3机电设备工作的特性 当主变压器装置以及提升机设备在实际运行时,这些机电设备自身作业特点使得它们所承载负荷会出现较为频繁变化,同时负荷变化也相对剧烈,从而导致非常多的无功功率以及谐波出现,也会使得系统的电压发生相对大变化,线路中的压降问题更为严重,对于机电设备的正常运转会造成极为不利影响。另外,若是出现谐波,将会使得误动作发生概率进一步增加,对于金属矿山安全生产而言是极为不利的。 3无功补偿电路设计 在某矿山供电设备中,一共设置有2台SVG无功补偿设备,分别将其安装在不同的6KV母线之中,通过利用母联开关实现转换,每一个SVG无功补偿设备所拥有的补偿容量均为8MVar。在SVG无功补偿装置之中,包含有电路信号收集装置、设备主控制装置以及放大电力等等,因为在该矿的供电系统中,其间隔时间相对长,使得不同的负载启动过程不够及时,从而进一步使得负载设备所拥有能耗有所增加。而所设置的SVG无功补偿设备,便是针对一些拥有较大功率的机电设备,在起启动过程中实现无功补偿,确保系统中电压以及电流等均能够保持稳定状态,让机电设备能够处于安全阙值范围之内运行,从而使得能耗也有所减少。把SVG无功补偿设备接入至电路以后,其中K1是处在导通状态的,而K2则处于断开状态,母线的电流会被输送至SVG补偿装置,可以给其中的静止无功发生器对应电路进行充电,在完成了充电过程以后,此时K2便会随之被接通,如此静止无功发生器装置便能够针对供电系统的无功功率大小加以监测,同时根据无功功率大小进行补偿。在供电网络之中,静止无功补偿装置在进行电路设计过程中,是采用的不同“H桥”串联方式,在单独的“H桥”之中均包

相关文档
最新文档