关于单晶硅各向异性腐蚀机理的讨论概要
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文编号PV-46(共6页)
关于单晶硅各向异性腐蚀机理的讨论
许彦旗汪义川季静佳施正荣
无锡尚德太阳能电力有限公司214028
摘要:在单晶硅太阳电池的制备工艺中,经常利用碱溶液对各个晶面腐蚀速率不同,在硅片表面形成类“金字塔”状绒面,降低反射率。
本文研究了(氢氧化钠+乙醇)混合体系对(100)晶向的单晶硅片的各向异性腐蚀过程,描述了随着氢氧化钠的含量、乙醇的含量和反应时间的变化,金字塔绒面微观形貌和硅片表面反射率的变化情况,从金字塔的成核、生长过程的角度,分析了各工艺参数影响绒面质量的机理,总结出了适宜大规模生产的工艺参数。
关键词:单晶硅绒面各向异性
Abstract: Anisotropic etching process of (100 oriented crystalline silicon in alkaline solution containing sodium hydroxide and ethanol was investigated, which is the common formula of texturing solution in Chinese mass production of mono-silicon solar cells. This paper shows the different surface morphology and reflectance as the concentrations of NaOH or ethanol, as well as etching time changed. The roles of NaOH and ethanol in the texturing solution are expressed from the view point of nucleation and growth of pyramid. The processing parameters are optimized to meet the requirement for mass production. Key words: crystalline silicon, texturization, anisotropic etching
1引言
为了提高单晶硅太阳电池的光电转换效率,工业生产中通常采用碱与醇的混合溶液对(100)晶向的单晶硅片进行各向异性腐蚀,在表面形成类“金字塔”状的绒面(pyramidal texture ),有效的增强了硅片对入射太阳光的吸收,从而提高光生电流密度。
对于既可获得低的表面反射率,又有利于太阳电池的后续制作工艺的绒面,应该是金字塔大小均匀,单体尺寸在2~10微米之间,相邻金字塔之间没有空隙,即覆盖率达到100%。
理想质量绒面的形成,受到了诸多因素的影响,例如硅
片被腐蚀前的表面状态、制绒液的组成、各组分的含量、温度、反应时间等。
而在工业生产中,对这一工艺过程的影响因素更加复杂,例如加工硅片的数量、醇类的挥发、反应产物在溶液中的积聚、制绒液中各组分的变化等。
为了维持生产良好的可重复性,并获得高的生产效率,要求我们比较透彻的了解金字塔绒面的形成机理,控制对制绒过程影响较大的因素,
在较短的时间内形成质量较好的金字塔绒面。
目前已经有许多的研究小组对单晶硅片的各向异性腐蚀过程进行了细致深入的
,,,,
研究[12345],各自给出了制备金字塔绒面的优化工艺条件。
在国外的研究和生产中,大部分的制绒液是碱(NaOH ,KOH ,Na 2CO 3,(CH3 4NOH )与异丙醇的混合溶液。
在中国,考虑到生产成本,太阳电池制造商大多使用价格相对较低的乙醇来替代异丙醇,与氢氧化钠的水溶液混合而成制绒液。
目前针对单晶硅片在(氢氧化钠+乙醇)的混合体系中形成金字塔绒面的过程,尚未见详细的研究报道。
我们在参考已经报道的实验数据的基础上,经过大量的实验,总结出了(氢氧化钠+乙醇)的混合体系对单晶硅片进行制绒的适宜参数,从而在较短时间内(30分钟)获得色泽均匀、反射率低的绒面单晶硅片。
然而当我们将实验室的条件下得到参数应用在生产线上时,往往在开始的几个批次,
可以加工出较理想的绒面,但随着产量的增加,绒面质量急剧变差,我们称之为制绒液的“失效”。
这种失效是由于制绒液中的主要成分—NaOH 和乙醇的含量,与最初的设置值已相去甚远。
另外,在绒面质量开始变差的时候,如果延长反应时间,可以加以改善。
因而,我们仔细观察了随着NaOH 的浓度、乙醇的浓度和反应时间的变化,绒面的微观形貌和硅片表面反射率的变化情况。
从本质上来讲,绒面形成的过程,就是金字塔的成核和生长的过程,一切表观参数对绒面质量的影
响,究其根本就是影响了金字塔的成核或者生长。
本文从这个角度详细分析了氢氧化钠和乙醇在制绒过程中各自扮演的角色。
2 实验原理和实验过程 2.1 实验原理
在高温下,硅与碱发生如下的化学反应:
Si + 2OH- + H2O = SiO32- + 2H2 ↑ 因而通常用热的碱溶液来腐蚀硅片。
对于晶体硅,由于各个晶面的原子密度不同,与碱进行反应的速度差别很大,有文献将晶体硅的(100)面与(111)面的被腐蚀的速率之商定义为“各向异性因子”(Anisotropic Factor ,AF )[1]。
通过改变碱溶液的浓度、温度等参数,可以有效的调节AF 。
当AF = 1时,硅片各晶面的溶解速度相似,得到的表面是平坦、光亮的,通常利用这一反应去除硅片表面的机械损伤层。
能够腐蚀出高质量的金字塔绒面的AF = 10。
2.2 实验过程
实验和生产所使用的硅片,是国产的(100)晶向的直拉单晶硅片,电阻率0.5~2 Ω·cm ,大小为103mm ×103mm 。
首先,将硅片放入60℃的清洗剂中进行超声清洗,清除在硅片加工过程中表面黏附的油污。
接着,用浓度为10 wt% 的NaOH 水溶液在90℃的温度下,去除硅片表面的机械损伤层,每面去除约10微米的厚度。
然后,在不同的条件下,在硅片表面腐蚀形成金字塔绒面。
我们选用的制绒液是分析纯NaOH 和
无水乙醇的混合水溶液,反应温度维持在85
±0.2 ℃。
反应釜用一块玻璃板密封,以减少乙醇在高温下的挥发。
由于我们的生产用反应槽中没有搅拌装置,所以制绒过程均不加机械搅拌。
最后,在
10wt% 的HF 中浸泡去除硅片表面自然氧化层后,用去离子水冲洗干净。
硅片表面的反射率是使用配带积分球的分光光度计测量,表面形貌借助日立S-570型扫描电子显微镜(SEM )进行观察。
3 实验结果及讨论
在单晶硅片的绒面制备过程中,温度是一个比较容易控制的参数,所以我们参考了已有的工艺参数,把制绒液的温度确定为85℃。
在实验室的条件下,温度的波动可以控制在±0.2℃,而在生产线的大型清洗机中,温差范围可达到±2℃。
经过大量的生产监测,我们认为这种程度温度变化,不足以对绒面质量造成显著的影响。
3.1反应时间对绒面形貌和反射率的影响
制绒液中含有15克/升的NaOH 和10 vol%的乙醇,温度85℃,单晶硅片经1分钟、5分钟、10分钟、30分钟腐蚀后,表面的微观形貌见图1,反射谱见图2,由于10分钟和30分钟的反射谱非常接近,所以省略了后者。
由图1可以看出在适宜的条件下,金字塔的成核、生长的过程。
经热的浓碱去除损伤层后,硅片表面留下了许多肤浅的准方形的腐蚀坑。
1分钟后,金字塔如雨后春笋,零星的冒出了头;5分钟后,硅片表面基本上被小金字塔覆盖,少数已开始长大。
我们称绒面形成初期的这种变化为金字塔“成核”。
如果在整个硅表面成核均匀,密度比较大,那么最终构成绒面的金字塔就会大小均匀,平均体积较小,这样的绒面单晶硅片不仅反射率低,而且有利于后续的扩散和丝网印刷,制造出的太阳电池的性能也更好。
很多相关的研究工作就是着力于增大金字
塔的成核密度[1,3,
5]。
从图1的c 可以看出,10分钟后,金字塔密布的绒面已经形成,只是大小不均匀,
反射率也降到了比较低的水平。
随着时间的
延长,金字塔向外扩张兼并,体积逐渐膨胀,
(a )1 min
(b )5 min
(c )10 min
(d )30 min
图1 单晶硅经不同时间制绒腐蚀后,表面的SEM 照片. Fig. 1 Surface morphology of crystalline silicon being textured in dilute NaOH solution for different durations
of time
尺寸趋于均等,反射率略有降低。
在实际生产中,硅片卡在承片盒内的区域,受到的腐蚀不充分,绒面成形的时间较其他区域要长。
另一方面,我们通过大量生产实践发现,大金字塔的绒面单晶硅电池,性能略逊于小金字塔。
原因可能在于,大金字塔尖锐的塔尖易于崩塌,扩散形成的pn 节受到了破坏。
所以,我们在优化
单晶硅片制绒工艺时,应该既考虑降低反射率,也要兼顾太阳电池的最终性能和外观等各方面的因素。
0.7
0.61-0(0.5e c n a 0.4t c e l 0.3f e R 0.20.1
300
500700
9001100
Wavelength (nm
图2 不同时间制绒后,硅片的反射谱 Fig. 2 Reflectance of cryatalline silicon being
textured for different durations of time
3.2 乙醇的含量对绒面的影响
制绒液中NaOH 的浓度为15克/升,反应温度85 ℃,乙醇的含量从0增大到30 vol%。
经30分钟制绒处理后,单晶硅片表面的金字塔绒面的微观形貌的变化如图3所示。
随着绒面形貌的变化,反射率也有所波动,图4展示了硅片对波长在400至1000纳米之间的光波的平均反射率随溶液中乙醇含量的变化,其中除了20 vol%乙醇的数据点外,其余各点分别对应图3中的四个样品。
当溶液中不含乙醇时,反应进行的速度比较快,硅片经30分钟制绒处理后,两面共被腐蚀减薄了40微米。
表面只有一些稀疏的金字塔,体积比较小。
由于金字塔的覆盖率很低,硅片对光的反射最强烈。
我们向溶液中加入了少许乙醇(
3
vol%),这种情况就大有改观,反应速度减缓,经过相同时间的腐蚀,硅片只减薄25
(a 无乙醇
(b )3 vol%
(c )10 vol%
(d )30 vol%
图3 单晶硅经不同乙醇含量的制绒液腐蚀后,
表面的SEM 照片.
Fig. 3 Surface morphology of crystalline silicon being
textured in dilute NaOH solution with different
concentrations of ethanol
微米,而金字塔分布错落有致,反射率几乎降到了最低。
只是在制绒过程中可以观察到,有一些反应产生的氢气泡贴在硅片表面,缓慢释放,造成外观的斑点,为商业销售所不喜。
只需将乙醇的含量增大到5 vol%,斑点的问题即可解决。
乙醇的含量在3 vol%至20 vol%的范围内变化时,制绒反应的变化不大,都可以得到比较理想的绒面,而5 vol%至10 vol%的环境最佳。
当乙醇的含量达到30 vol%,金字塔的覆盖率再次降低,反射率升高,只是此种条件下的反应速度缓慢,硅片只减薄了10微米。
0.3
0.250.20.150.1
10
20
30
Concentration of Ethanol (vol%
图4 绒面的平均反射率随乙醇含量的变化 Fig 4 Dependence of average reflectance on the
concentration of ethanol
由此可以看出,乙醇在制绒液中主要起到两点作用:一,协助氢气泡的释放;二,减弱NaOH 溶液对硅片的腐蚀力度,调节各向异性因子。
第一点已经为大家所认同。
从硅片减薄的程度可以判断,随着乙醇的增加,硅片被腐蚀的速度减慢。
纯NaOH 水溶液,在高温下不仅对原子排列稀疏的(100)晶面破坏性很强,对致密的(111)晶面也不再和颜悦色,各个晶面都受到腐蚀而不断消溶。
于是大部分的区域被冲刷形成了平原;而在局部,由于氢气泡或溶液中某些杂质的庇护,一些零星的金字塔暂时幸存了下来。
乙醇明显减弱了NaOH 的腐蚀强度,增强了腐蚀的各向异性,有利于金字塔的成形和生长。
而当乙醇的含量过高时,碱溶液对硅的腐蚀能力变的很弱,各个晶面都好像坚不可摧的铜墙铁壁,各向异性因子又趋向于1。
至于乙醇减弱NaOH
溶液腐蚀强度的机
A v e r a g e R e f l e c t a n c e
理,尚待深入研究。
3.3 NaOH 的含量对绒面的影响
这一组实验,是维持制绒液中乙醇的含量为10 vol%,温度85 ℃,时间30分钟,NaOH 的浓度从5克/升到55克/升之间变化。
图5、图6分别是不同浓度
NaOH 溶液腐蚀形成绒面的微观形貌与对400至1000纳米之间的光波的平均反射率。
(a 5g/l
(b 15g/l
(c 55g/l
图5 单晶硅经不同浓度NaOH 溶液腐蚀后,
表面SEM 照片
Fig.5 Surface morphology of crystalline silicon being textured in dilute NaOH solution with
different concentrations
从绒面的表面可以看出,经过相同时间的生长,NaOH 的浓度越高,金字塔的体积越大。
这说明在反应的初期,金字塔的成核密度近似,不受NaOH 浓度的影响。
而制绒液的腐蚀性随NaOH 浓度的变化比较显著,浓度高的NaOH 溶液与硅进行化学反应的速度加快,反应相同时间后,金字塔的体积更大。
当NaOH 的浓度超过了一定的界限,溶液的腐蚀力度过强,各向异性因子变小,绒面会越来越差,直至出现类似“抛光”的效果。
从图6可以看出,相比于乙醇,有利于绒面生长的NaOH 浓度范围比较小,在10—20克/升之间。
这就要求生产工艺人员严格的控制制绒液中的NaOH 浓度。
e
0.16
c n a t c e l 0.15
f e R e
g 0.14
a r e v A 0.13
5
1015202530
354045505560
Concentration of NaOH (g/l
图6 绒面的平均反射率随NaOH 浓度的变化 Fig. 6 Dependence of average reflectance on the
concentration of NaOH
4 结论
NaOH 与乙醇的混合溶液对晶体硅进行各向异性腐蚀,可以制备出类金字塔的织构表面。
理想的绒面应是金字塔体积较小、大小均匀、覆盖率高。
为了得到质量较好的绒面,首先,制绒反应初期金字塔成核均匀、密度较高;其次,碱腐蚀的各向异性因子约为10。
适宜的制绒液中应含有约15克/升的NaOH ,5—10 vol%的乙醇,在85℃下反应30分钟,就可以在单晶硅片表面形成色泽均匀、反射率低的金字塔绒面。
NaOH 含量的变化会改变溶液的腐蚀强度,适宜生产的浓度范围比较狭窄。
乙醇不仅可以加速反应产生的氢气泡从硅片表面的逃逸,更重要的是,减弱了NaOH 的腐蚀强度,获得良好的各向异性因子。
乙醇的允许范围较NaOH 宽
泛许多,在工业生产中容易控制。
制绒反应
的时间延长,金字塔的体积膨胀,大小趋于均匀,反射率略有降低。
在大规模生产中,我们应考虑到生产效率、反射率、后续加工过程等多方面的因素,选择适宜的制绒工艺条件。
2. P. K. Singh, R. Kumar, M. Lal et al, Effectiveness of Anisotropic Etching of Silicon in Aqueous Alkaline Solution, Sol. Energy Mater. Sol. Cells 70 (2001 103. 3. Y. Nishimoto, K. Namba, Investigation of Texturization for Crystalline Silicon Solar Cells with Sodium Carbonate Solutions, Sol. Energy 参考文献1. E. Vazsonyi, K. De Clercq, R. Einhaus et al, Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells, Sol. Energy Mater. Sol. Cells 57 (1999 179. 5.
4. Mater. Sol. Cells 61 (2000 393. 崔容强,秦蕙兰,绒面硅太阳电池的研究,太阳能学报,1980,1(2):189-196. 席珍强,杨德仁等,单晶硅太阳电池的表面织构化,太阳能学报,2002,23(3):285-289.。