RuffExperimentalDesign认知神经科学实验设计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A categorical analysis
Experimental design
Word generation
G
Word repetition
R
RGRGRGRGRGRG
G - R = Intrinsic word generation …under assumption of pure insertion
Smoothing
General linear model
Normalisation
Statistical inference
Gaussian field theory
Template
Parameter estimates
p <0.05
Overview
• Categorical designs
Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses
Experimental Design
Christian Ruff
With thanks to: Rik Henson Daniel Glaser
Image time-series
Kernel
Design matrix
Байду номын сангаас
Statistical parametric map (SPM)
Realignment
Linear
- Adaptation, cognitive dimensions
Nonlinear
- Polynomial expansions, neurometric functions
• Factorial designs
Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions
- Psychophysiological Interactions
Evoked responDsifefesr:en„tRiael esvte“ntb-raeslaetelidnfeMRI
SPM{F} testing for evoked responses
Inferotemporal response to faces
• A test for such activation common to several independent contrasts is called “Conjunction”
• Conjunctions can be conducted across a whole variety of different contexts: • tasks • stimuli • senses (vision, audition) • etc.
- Psychophysiological Interactions
Conjunctions
• One way to minimise the baseline/pure insertion problem is to isolate the same process by two or more separate comparisons, and inspect the resulting simple effects for commonalities
Overview
• Categorical designs
Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses
• Parametric designs
Visual Processing
V
Object Recognition
R
Phonological Retrieval P
Task (1/2)
Naming Viewing
A1
A2
B1
B2
Stimuli (A/B)
Colours Objects
(Object - Colour viewing) & (Object - Colour naming)
• Parametric designs
Linear
- Adaptation, cognitive dimensions
Nonlinear
- Polynomial expansions, neurometric functions
• Factorial designs
Categorical - Interactions and pure insertion Parametric - Linear and nonlinear interactions
• But the contrasts entering a conjunction have to be truly independent!
Conjunctions
Example: Which neural structures support object recognition, independent of task (naming vs viewing)?
• “Baseline” here corresponds to session mean (and thus processing during “rest”)
• Null events or long SOAs essential for estimation
• “Cognitive” interpretation hardly possible, but useful to define regions generally involved in the task
[1 -1 0 0] & [0 0 1 -1]
Common object
Price et al, 1997 recognition response (R)
[ R,V - V ] & [ P,R,V - P,V ]
=
R&R
=R
(assuming no interaction RxP; see later)