案例4:遗传算法优化神经网络-更好拟合函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法优化神经网络-更好拟合函数1.案例背景

BP神经网络是一种反向传递并且能够修正误差的多层映射函数,它通过对未知系统的输入输出参数进行学习之后,便可以联想记忆表达该系统。但是由于BP网络是在梯度法基础上推导出来的,要求目标函数连续可导,在进化学习的过程中熟练速度慢,容易陷入局部最优,找不到全局最优值。并且由于BP网络的权值和阀值在选择上是随机值,每次的初始值都不一样,造成每次训练学习预测的结果都有所差别。遗传算法是一种全局搜索算法,把BP神经网络和遗传算法有机融合,充分发挥遗传算法的全局搜索能力和BP神经网络的局部搜索能力,利用遗传算法来弥补权值和阀值选择上的随机性缺陷,得到更好的预测结果。本案例用遗传算法来优化神经网络用于标准函数预测,通过仿真实验表明该算法的有效性。

2.模型建立

2.1预测函数

2.2 模型建立

遗传算法优化BP网络的基本原理就是用遗传算法来优化BP网络的初始权值和阀值,使优化后的BP网络能够更好的预测系统输出。遗传算法优化BP网络主要包括种群初始化,适应度函数,交叉算子,选择算子和变异算子等。

2.3 算法模型

3.编程实现

3.1代码分析

用matlabr2009编程实现神经网络遗传算法寻找系统极值,采用cell工具把遗传算法主函数分为以下几个部分:

Contents

•清空环境变量

•网络结构确定

•遗传算法参数初始化

•迭代求解最佳初始阀值和权值

•遗传算法结果分析

•把最优初始阀值权值赋予网络预测

•BP网络训练

•BP网络预测

主要的代码段分析如下:

3.2结果分析

采用遗传算法优化神经网络,并且用优化好的神经网络进行系统极值预测,根据测试函数是2输入1输出,所以构建的BP网络结构是2-5-1,一共去2000组函数的输入输出,用其中的1900组做训练,100组做预测。遗传算法的基本参数为个体采用浮点数编码法,个体长度为21,交叉概率为0.4,变异概率为0.2,种群规模是20,总进化次数是50次,最后得到的遗传算法优化过程中最优个体适应度值变化如下所示:

4 案例扩展

4.1 网络优化方法的选择

4.2 算法的局限性清空环境变量

clc

clear

网络结构建立

%读取数据

load data input output

%节点个数

inputnum=2;

hiddennum=5;

outputnum=1;

%训练数据和预测数据

input_train=input(1:1900,:)';

input_test=input(1901:2000,:)';

output_train=output(1:1900)';

output_test=output(1901:2000)';

%选连样本输入输出数据归一化

[inputn,inputps]=mapminmax(input_train);

[outputn,outputps]=mapminmax(output_train);

%构建网络

net=newff(inputn,outputn,hiddennum);

遗传算法参数初始化

maxgen=50; %进化代数,即迭代次数

sizepop=20; %种群规模

pcross=[0.4]; %交叉概率选择,0和1之间pmutation=[0.2]; %变异概率选择,0和1之间

%节点总数

numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

lenchrom=ones(1,numsum);

bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据围

%------------------------------------------------------种群初始化

--------------------------------------------------------

individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体

avgfitness=[]; %每一代种群的平均适应度bestfitness=[]; %每一代种群的最佳适应度bestchrom=[]; %适应度最好的染色体

%初始化种群

for i=1:sizepop

%随机产生一个种群

individuals.chrom(i,:)=Code(lenchrom,bound); %编码(binary和grey的编码结果为一个实数,float的编码结果为一个实数向量)

x=individuals.chrom(i,:);

%计算适应度

individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn, outputn); %染色体的适应度

end

%找最好的染色体

[bestfitness bestindex]=min(individuals.fitness);

bestchrom=individuals.chrom(bestindex,:); %最好的染色体

avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度

% 记录每一代进化中最好的适应度和平均适应度

trace=[avgfitness bestfitness];

迭代求解最佳初始阀值和权值

进化开始

for i=1:maxgen

i

% 选择

individuals=Select(individuals,sizepop);

avgfitness=sum(individuals.fitness)/sizepop;

%交叉

individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bou nd);

% 变异

individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizep op,i,maxgen,bound);

% 计算适应度

for j=1:sizepop

x=individuals.chrom(j,:); %解码

individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn, outputn);

end

%找到最小和最大适应度的染色体及它们在种群中的位置

[newbestfitness,newbestindex]=min(individuals.fitness);

[worestfitness,worestindex]=max(individuals.fitness);

% 代替上一次进化中最好的染色体

if bestfitness>newbestfitness

bestfitness=newbestfitness;

bestchrom=individuals.chrom(newbestindex,:);

end

individuals.chrom(worestindex,:)=bestchrom;

individuals.fitness(worestindex)=bestfitness;

相关文档
最新文档